SISTEMA DE ALIMENTACIÓN MÓVIL PARA GANADO BOVINO
Caso de estudio: Agropecuaria La Esperanza

Valeria Gómez Cardona

Universidad Católica de Pereira
Facultad de Arquitectura y Diseño
Programa Diseño Industrial
Proyecto de Grado
Pereira
2017
SISTEMA DE ALIMENTACIÓN MÓVIL PARA GANADO BOVINO

ESTUDIO DE CASO: AGROPECUARIA LA ESPERANZA

VALERIA GÓMEZ CARDONA

DOCENTE

CARMEN ADRIANA PEREZ CARDONA

UNIVERSIDAD CATÓLICA DE PEREIRA

FACULTAD DE ARQUITECTURA Y DISEÑO

PROGRAMA DISEÑO INDUSTRIAL

PROYECTO DE GRADO

2017

PEREIRA
AGRADECIMIENTOS

Agradezco a todos los que hicieron parte de este proceso, a los que me apoyaron y me ayudaron, en especial a la ejecución de lo que hoy es realidad, mi proyecto de grado.

A la Universidad Católica de Pereira, especialmente a la facultad de arquitectura y diseño, a sus docentes que durante todo el proceso de preparación y desarrollo estuvieron dispuestos a ayudar y a brindar un poco de sus conocimientos.

A mis padres que de una u otra forma tuvieron mucha paciencia y me ayudaron con mis proyectos y sin olvidar que me dieron la oportunidad de estudiar.

A mi hijo que fue mi prueba de fuerza y superación para seguir adelante con mis sueños, en la espera del tiempo que dedique, a lo que hoy es realidad, a todos

MUCHAS GRACIAS.
<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>TÍTULO</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLANTEAMIENTO DEL PROBLEMA</td>
<td>9</td>
</tr>
<tr>
<td>1.1</td>
<td>USUARIOS</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>JUSTIFICACIÓN</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>OBJETIVOS</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>OBJETIVO GENERAL</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>OBJETIVOS ESPECÍFICOS</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>FUNDAMENTACIÓN TEÓRICA</td>
<td>14</td>
</tr>
<tr>
<td>4.1</td>
<td>MARCO GEOGRÁFICO</td>
<td>16</td>
</tr>
<tr>
<td>4.2</td>
<td>ANTECEDENTES</td>
<td>17</td>
</tr>
<tr>
<td>4.3</td>
<td>MARCO CONCEPTUAL</td>
<td>20</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Bovinos de la agropecuaria la Esperanza</td>
<td>20</td>
</tr>
<tr>
<td>4.3.2</td>
<td>La alimentación bovina</td>
<td>21</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Tipos de alimento</td>
<td>21</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Transporte del ganado</td>
<td>22</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Antropometría</td>
<td>22</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Manejo de alimento en ferias ganaderas</td>
<td>24</td>
</tr>
<tr>
<td>4.3.7</td>
<td>diseño y usabilidad</td>
<td>25</td>
</tr>
<tr>
<td>4.4</td>
<td>MARCO LEGAL</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>ANÁLISIS E INTERPRETACIÓN DE DATOS</td>
<td>27</td>
</tr>
<tr>
<td>5.1</td>
<td>TRABAJO DE CAMPO</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>ANÁLISIS DE TIPOLOGÍAS</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>METODOLOGÍA DE DISEÑO</td>
<td>40</td>
</tr>
<tr>
<td>7.1</td>
<td>REQUERIMIENTOS</td>
<td>42</td>
</tr>
<tr>
<td>7.2</td>
<td>CONCEPTO DE DISEÑO</td>
<td>44</td>
</tr>
<tr>
<td>7.3</td>
<td>ALTERNATIVAS DE DISEÑO</td>
<td>45</td>
</tr>
<tr>
<td>7.4</td>
<td>EVALUACIÓN DE ALTERNATIVAS MATRIZ ANÁLISIS COMPARATIVO</td>
<td>51</td>
</tr>
<tr>
<td>7.5</td>
<td>DISEÑO DE DETALLES</td>
<td>52</td>
</tr>
<tr>
<td>7.6</td>
<td>MODELOS Y SIMULADORES</td>
<td>55</td>
</tr>
<tr>
<td>7.7</td>
<td>PROPUESTA FINAL</td>
<td>58</td>
</tr>
<tr>
<td>7.8</td>
<td>RENDER PROPUESTA DEFINITIVA</td>
<td>59</td>
</tr>
<tr>
<td>7.9</td>
<td>SECUENCIA DE USO</td>
<td>60</td>
</tr>
<tr>
<td>7.10</td>
<td>PLANOS TÉCNICOS</td>
<td>63</td>
</tr>
<tr>
<td>7.11</td>
<td>DESPIECE</td>
<td>71</td>
</tr>
<tr>
<td>7.12</td>
<td>PROCESO PRODUCTIVO</td>
<td>72</td>
</tr>
</tbody>
</table>
TABLA DE ILUSTRACIONES

Ilustración 1 Identificación del usuario .. 11
Ilustración 2 Comederos artesanales .. 16
Ilustración 3 Agropecuaria la esperanza ... 17
Ilustración 4 Antecedentes 1 y 2 ... 18
Ilustración 5 Antecedentes 3 y 4 ... 19
Ilustración 6 Medidas del bovino ... 23
Ilustración 7 Movimientos de las articulaciones 23
Ilustración 8 Comedero actual ... 29
Ilustración 9 Caneca de alimento actual ... 29
Ilustración 10 Estabilidad del sistema actual 30
Ilustración 11 Soporte de la caneca alimento actual 30
Ilustración 12 Soporte del comedero actual 30
Ilustración 13 Montaje del camión ... 31
Ilustración 14 Apilamiento del camión ... 31
Ilustración 15 Apilamiento de canecas ... 31
Ilustración 16 Buscando el apilamiento adecuado 31
Ilustración 17 Ciclo de uso de la caneca convencional 32
Ilustración 18 Planimetría del contexto .. 32
Ilustración 19 Usabilidad de los comederos 34
Ilustración 20 Uso de la caneca convencional 34
Ilustración 21 Análisis etnográfico del operario 36
Ilustración 22 Tipologías 1 ... 37
Ilustración 23 Tipologías 2 ... 38
Ilustración 24 Curva de valor ... 39
Ilustración 25 Metodología de diseño .. 41
Ilustración 26 Concepto de diseño .. 45
Ilustración 27 Render alternativa 1 .. 46
Ilustración 28 Render alternativa 2 .. 47
Ilustración 29 Render alternativa 3 .. 47
Ilustración 30 Render alternativa 4 .. 48
Ilustración 31 Evaluación con los expertos .. 49
Ilustración 32 Render alternativa 5 .. 50
RESUMEN

Este proyecto es el diseño de un sistema de alimentación bovina para la Agropecuaria la Esperanza, ubicada en la ciudad de Cartago Valle, en la cual se hizo el estudio sobre los recipientes de alimentación para vacas, elaborados por la empresa directamente, estos presentan diversos problemas en aspectos como: transporte para ferias ganaderas, derramamiento de alimento, inestabilidad en el elemento causando desperdicios y exceso de carga laboral por parte de los operarios. Desde la disciplina de diseño industrial se genera un prototipo que responde ante esta necesidad, a través del proceso metodológico centrado en el usuario, la investigación etnográfica y conceptual permite entender el proceso, llegando al resultado de diseñar un producto que dosifica la alimentación del animal en el transcurso del día, repartiendo la cantidad final en diversas porciones, posee un elemento de transporte para facilitar su uso y garantizar que el alimento no se derramare, beneficiando al operario y la agropecuaria al disminuir los costos.

Palabras claves: Bovino, Alimentación, Dosificación, Transporte, Adaptabilidad.

ABSTRACT

This project is the design of a bovine feeding system for Agropecuaria la Esperanza, located in the city of Carthage Valley, where the study was carried out on feed containers for cows, produced by the company directly, they present various problems in aspects such as: transport for livestock fairs, food spillage, instability in the element causing waste and excess workload by operators. From the discipline of industrial design a prototype is generated that responds to this need, through the methodological process centered on the user, the ethnographic and conceptual research allows to understand the process, arriving at the result of designing a product that dosifies the feeding of the animal in the course of the day, distributing the final quantity in various portions, has an element of transport to facilitate its use and ensure that the food does not spill, benefiting the operator and agriculture by reducing costs.

Keywords: Bovine, Feeding, Means, Transport, Adaptability
INTRODUCCIÓN

A pesar de que en el mercado se consiguen diferentes tipos de comederos y que varios de ellos son auto compensados, existen siempre dos dificultades que se hacen visibles en el desarrollo del animal, el derramamiento del alimento que termina por no ser ingerido, haciéndose evidente en el peso del bovino y el transporte de dichos comederos que dificultan también su alimentación en otros espacios.

Por ende, desde la disciplina de diseño industrial se pretende responder a esta necesidad, a través de la generación de un sistema de alimentación efectivo tanto para la agropecuaria la esperanza, lugar de investigación y aplicación de este proyecto, como para el animal.

Para el desarrollo de esta propuesta se implementa un modelo secuencial iterativo que permite ordenar de manera estratégica los pasos e implementarlos cuando sea necesario, esta fase que se convierte en una herramienta es la metodología DCU (diseño centrado en el usuario), que permite analizar los diferentes actores que intervienen en el problema que se plantea, en este caso son operarios que están a cargo del animal y el ganado vacuno en sí, evidenciando necesidades secundarias no aparentes para mejorar su interacción diaria y optimizando las labores que se realizan diariamente en la agropecuaria.

A través de esta metodología se plantean diferentes pasos hasta lograr el objetivo principal resultante de este proyecto, que consistió en generar un sistema de alimentación bovino dosificado, fácil de transportar a las diferentes ferias y eventos ganaderos de la región, el cual disminuye la carga laboral del operario y permite que el animal consuma el alimento en su totalidad, evitando el derramamiento y perdida de dinero en la recompra del mismo y en el peso del animal que influye en el momento de su exposición, generando un alto beneficio en la aplicación de este proyecto dentro de la Agropecuaria la Esperanza.
1. PLANTEAMIENTO DEL PROBLEMA

Las haciendas ganaderas tienen dentro de sus actividades regulares, asistir a ferias de exposiciones, donde exhiben la calidad de su ganado y se hacen relaciones estratégicas que favorecen su economía, reconocimiento y crecimiento de la empresa, la participación en estas ferias implican una serie de actividades, como: movilización del ganado, traslado de equipo e insumos, entre los que se encuentra el alimento, siendo esta fundamental para los animales:

“un programa de alimentación animal se debe enfocar en un mejoramiento continuo de las condiciones de los animales, que satisfaga sus requerimientos nutricionales (en cantidad y calidad) y les permita un buen desempeño, lo cual se evidencia en los parámetros productivos y reproductivos (peso al nacimiento, peso al destete, ganancia de peso, producción de leche e intervalo entre partos), como también en la salud y el bienestar del hato” (Moreno & Molina, 2007)

Por lo tanto, es de suma importancia tener en cuenta todos los factores que intervienen en este proceso cuando se realiza una exposición en ferias, pero justamente dicha actividad es bastante compleja, ya que el sistema de alimentación diariamente es de 6am a 7pm, los animales comen 5 veces durante este lapso de tiempo en intervalos aproximados de 2 horas y en feria se deben mantener las mismas condiciones, esta actividad requiere de dedicación y en las encuestas aplicadas los operarios manifiestan dificultades en el proceso de cargue, descargue, y dosificación del alimento, presentando agotamiento en la labor.

Actualmente el alimento es servido en canecas de almacenamiento de 200 litros adaptadas para la función de contener, para lo cual las cortan a la mitad convirtiéndola en dos recipientes cóncavos, cumpliendo la labor de contener la dieta del animal; pero por medio del estudio de campo en la Agropecuaria la Esperanza se determinó que poseen dos grandes falencias: la primera corresponde a la estabilidad del recipiente, punto importante si se tiene en cuenta el elevado costo de dichos alimentos y el dinero que se puede perder al regarlo y la segunda, corresponde al espacio que dicha caneca requiere en su uso y transporte a las ferias, su tamaño oscila entre los 60 cms de ancho y 1 metro de largo, sin tener en cuenta el soporte que necesita.

El alimento que se le proporciona al rumiante es de 70 kilos diarios, el operario realiza la mezcla de los concentrados los cuales se ubican en canecas, estas después son depositadas
en otras canecas de menos peso para ser llevadas al establo y dosificadas en cada alimentador, este proceso se realiza cinco veces al día, lo que hace que la labor sea dispenciosa y el operario se agote en el cargue y descargue del alimento.

En cuanto a la primera falencia que corresponde a la estabilidad del recipiente, se determina que, el actual sistema de alimentación presente en la Agropecuaria, no brinda la estabilidad para ser ubicado en el establo de la feria, tampoco soporta el movimiento natural del animal, presentando volcamiento y derrame de la dieta, lo afecta la rentabilidad y por si la dieta del semoviente, generando un atraso del bovino.

En cuanto al transporte del sistema de alimentación para ferias ganaderas, se evidencian varias falencias, la primera consiste en el espacio limitado del camión, este es multipropósito, es decir debe transportar el ganado y los implementos necesarios para la estadía en la feria, lo que impide que se lleve el soporte, llevando solo la caneca, que se debe colocar directamente sobre el piso haciendo aún más inestable el sistema y provocando mayor derrame del alimento, otra falencia consiste en el montaje al camión de las canecas y su acomodación, proceso que requiere de mayor esfuerzo físico por parte de los operarios.

En la actualidad dichas canecas son sujetadas con lazos al perímetro interno del camión las cuales con el movimiento no solo del vehículo, sino también del ganado, se desajustan y se sueltan, lo que hace que la caneca se desplace por el espacio constantemente; ocasionando que el ganado no solo se estrese por el ruido, sino que también pueda llegar lastimado por algún movimiento en falso.

Se debe agregar que no solo las vacas se encuentran afectadas a causa de la actividad de transporte del campo a la ciudad, sino que también se presentan inconformidades en los operarios que ejercen la función, exponiéndose a tiempos excesivos en montaje y desmontaje del camión, causando con este el desgaste del personal, produciendo fatiga laboral, y reducción del rendimiento.

De acuerdo a lo anterior se plantea la siguiente pregunta de investigación como guía del proyecto:
¿Cómo mejorar el sistema de alimentación para ganado bovino, teniendo en cuenta la adaptación a diferentes espacios y la ergonomía del operario?

1.1 USUARIOS

2. JUSTIFICACIÓN

La investigación pretende resolver algunas de las necesidades que poseen los empresarios agropecuarios en cuanto a la alimentación bovina, tanto en el campo, como en las ferias de exposición regionales, dado que este proceso acarrea una serie de acciones, como el transporte, el montaje y desmontaje del sistema de alimentación para los animales, que se dificulta debido a las dimensiones de los elementos al ser ubicadas en un espacio reducido,
el soporte y el peso de todo el sistema, sumado a esto los esfuerzos realizados por el operario para trasladar el sistema de cada anima, para ferias pequeñas se trasladan 10 animales y en ferias más grandes el promedio es entre 15 y 25 animales, esto depende de la capacidad del ganadero.

Según la entrevista realizada por (Vargas, 2012) para el periódico, El Heraldo al médico veterinario zootecnista Luis Guillermo Fuentes, resalta la importancia de la alimentación bovina y de cómo la cultura ganadera de nuestro país no ha focalizado este aspecto como un factor diferencial en el desarrollo del animal, tanto de uso cárnico o lácteo como de exposición, anuncia que poco se ha intervenido en este aspecto y que el desaprovechamiento alimenticio es un dato que no ha sido cuantificado e ignora el ganadero.

La importancia de realizar un sistema para el alimento bovino radica en que pueda ser usado en el momento de exposición y en el establo de la finca, esto tendría relevancia en el país, pues:

“La ganadería en Colombia es la actividad históricamente más importante del sector agropecuario. Según el Ministerio de Agricultura, el área dedicada a la ganadería es nueve veces mayor que el área agrícola; constituye el 67% del valor de la producción pecuaria y 30% del valor de la producción agropecuaria; representa más del doble de la producción avícola, más de tres veces el valor de la producción del café, más de cinco veces la producción de flores y cerca de seis veces la producción de arroz” (Vergara, 2010)

Por ende, el sector ganadero es mayor que otros productos de gran importancia en Colombia como el café, el arroz, además la aplicación de este proyecto podría trascender el público directo que se encuentra en el municipio de Cartago, que cuenta con 10 haciendas dedicadas a exponer su ganado en las diferentes ferias de Colombia, en donde la Agropecuaria La Esperanza, punto de partida de este proyecto, hace parte de estas y una de sus actividades es la participación en 5 ferias reconocidas en el país (Corferias, Córdoba, Montería, Tuluá, y San Carlos en el Meta), realizando una inversión importante para asistir a cada una de ellas, esta es una oportunidad de negocio que muestra las características del ganado, el cual adquiere sus buenas condiciones y su reconocimiento debido al alimento que le ganadero suministra.
Al igual este proyecto es pertinente no solo porque genera una solución en los animales y ganaderos, sino por la posibilidad de unirse a la producción sostenible de ganadería que se está implementando actualmente en Colombia, dado que se pretende reducir el desperdicio de comida, a través de un diseño que solucione los problemas de alimentación en el transporte para ferias y en los establos fijos.

Otro aspecto fundamental es la poca novedad de productos que hoy por hoy se aprecian, pues, aunque el mercado ofrece diferentes tipos de comederos a precios considerables, estos pierden funcionalidad en cuanto al transporte, la versatilidad y el mantenimiento del alimento en el recipiente, el análisis integral de este proceso en el proyecto de investigación permitirá entender el sistema de forma completa, lo que podrá dar como resultado un sistema adaptable a distintos espacios.

Dentro de la industria pecuaria se evidencia una excelente oportunidad de utilidad para el diseño industrial, no solo por su gran participación en la economía colombiana y el reconocimiento que tendría el proyecto, sino por el impacto que conlleva el realizar soluciones apropiadas para el campo, que garanticen el máximo aprovechamiento de su materia prima y permita el crecimiento continuo de la industria. Por ello se ha considerado oportuno este proyecto que nace desde la aplicación de la disciplina, suplir los requerimientos que conlleva la participación en ferias a nivel departamental y nacional, logrando optimizar la inversión que se ha realizado en alimentación para el animal.

3. OBJETIVOS

3.1 OBJETIVO GENERAL

Diseñar un sistema de alimentación bovina adaptable a través de la aplicación del concepto de modularidad, para que contenga, suministre y aproveche el espacio, facilitando el montaje y desmontaje en ferias de exposiciones ganaderas de la región, disminuyendo la fatiga laboral de los operarios de la agropecuaria La Esperanza.
3.2 OBJETIVOS ESPECÍFICOS

- Realizar un elemento que facilite el suministro de alimento por medio de piezas modulares que reduzcan el espacio y el peso para el operario y genere estabilidad evitando derrames del alimento.
- Implementar en las piezas modulares características de adaptabilidad que permitan el montaje y desmontaje rápido del mismo, disminuyendo el tiempo del operario en la instalación del sistema.
- Considerar costos asequibles para el ganadero, utilizando elementos que no sobrepase el valor que maneja la agropecuaria la Esperanza, para que sea un sistema de aplicación inmediata.

4. FUNDAMENTACIÓN TEÓRICA

A continuación, se presentan los diferentes marcos categorizados por aspectos temarios de diferentes enfoques que se deben tener en cuenta para entender, diseñar, desarrollar y aplicar un sistema de alimentación para bovinos con las características específicas para ferias de exposición cumpliendo los objetivos nombrados anteriormente.

Dentro de estos se encuentra el marco histórico en donde se entiende que el transporte de los animales bovinos ha evolucionado siendo de gran importancia mantener sus condiciones físicas y mentales de una manera estable, así seguido a este se ubica el marco geográfico ubicando que este proyecto se realizará en una agropecuaria en particular denominada La Esperanza que se encuentra en la ciudad de Cartago, Valle del Cauca.

Se realiza también una búsqueda de antecedentes de proyectos similares para entender su aplicación, obtener de ellos referencias importantes aplicables a este proyecto y marcar una pauta diferencial entre ellos y lo que se desea plantear.
MARCO HISTÓRICO

Es de vital importancia entender el camino histórico que abarcan los proyectos agroindustriales, a través de los tiempos la apreciación del trato animal y sus necesidades básicas han ido evolucionando no solo en el aspecto tecnológico sino también en las apreciaciones culturales y éticas que hoy encaminan el trato y aprovechamiento animal.

El transporte del ganado bovino, viene siendo un factor importante desde 1852 para el agro en crecimiento, lo que ahora sigue implementándose en el comercio agroindustrial pero con cambios repentininos a la evolución del tiempo.

El transporte por ferrocarril fue el primer gran estímulo al mercado del ganado, no solo facilitó el transporte rápido y económico de las reses vivas hasta lugares distantes, sino también multiplicó los mercados ganaderos y los establecimientos de matanza en ciudades situadas en zonas de producción. El primer envió importante de reses vivas por ferrocarril en EE.UU. fue en 1852. La Compañía de Ferrocarriles de Pennsylvania fue la que por primera vez construyó vagones especiales para ganado en 1954, y ya en 1960 el transporte de ganado vivo por ferrocarril era de uso constante, llegando a existir vagones hasta de dos pisos (Transporte de ganado bovino. Sánchez, Gómez; José Ignacio, 2011)

La Organización Mundial de Sanidad Animal (OIE) es la única organización mundial encargada, en su calidad de organismo intergubernamental, de elaborar las normas relativas al bienestar animal. A partir de su fundación en 1924 se empezó a hablar de bienestar animal y comenzaron a desarrollarse normas intergubernamentales sobre sanidad animal.

“El bienestar animal es una cuestión compleja que comprende aspectos científicos, éticos, económicos, culturales y políticos. Hoy en día, los ganaderos y productores se interesan cada vez más por este tema y algunos lo consideran parte integrante de las características de calidad de sus productos. Los consumidores de todo el mundo manifiestan también un interés creciente por el bienestar animal, lo que influye cada vez más en los datos del mercado mundial de animales y productos de origen animal.” (Organización Mundial de Sanidad Animal. OIE, 2015)

Una parte importante del bienestar animal está regido por su alimentación, calidad, cantidad, tiempos y cuidados, es por ello que este proyecto pretende dar un paso adelante en proceso de alimentación bovina donde se garantice al cuidador del ganado, que el animal consumió la totalidad del alimento y no fue derramado por falencias del comedero, adicionándole a esto...
las características propias del diseño, como funcionalidad, seguridad, apilamiento y transporte del sistema de alimentación.

Este sistema de alimentación, en el transcurso del tiempo ha tenido pocas variaciones, siempre se ha pensado desde el proceso funcional y se han realizado a partir de materiales que posee el ganadero, siendo en su mayoría fabricaciones artesanales.

A continuación de evidencian imágenes de los comederos actuales proporcionados por algunas de las agropecuarias.

![Imagen de comederos artesanales]

Ilustración 2 Comederos artesanales

Fuente: Recuperado de https://ar.all.biz/img/ar/catalog/

4.1 MARCO GEOGRÁFICO

Cartago es un municipio con 133.000 habitantes aproximadamente, donde su principal actividad económica está representada por la agricultura, la ganadería y el comercio. El proyecto enfoca su visión hacia el desarrollo del sector agroindustrial, permitiendo así impulsar la industria con el aporte que puede brindar el diseño industrial, siendo posible crear un impacto real en el sector, para generar una innovación productiva del campo.

Desde hace muchos años el municipio de Cartago, Valle es reconocido por su movimiento agroindustrial en el sector ganadero como lo afirma el periódico El Tiempo “La feria
ganadera de Cartago está catalogada actualmente como la segunda en importancia en el país después de la feria de Medellín”. (Javier Daro Arroyave. El tiempo. 1998). El municipio representa el 27% que equivalen a 10 fincas de las 37 que existen en la industria Vallecaucana en este aspecto ganadero.

4.2 ANTECEDENTES

Para el estudio efectivo de este proyecto se hace necesario realizar una búsqueda de proyectos o procesos similares a este, con el fin de identificar que se ha realizado hasta el momento en los comederos de animales y tener un principio de aplicación, efectividad y mejora del producto actual.
Antecedente 1

Integración de un sistema dosificador de alimento para ganado bovino
Duván Alejandro Suarez
David Manrique Pérez
Tecnología en Mecatrónica
Universidad Tecnológica de Pereira
Pereira, Risaralda
Mayo, 2016

Este proyecto es de base tecnológica en donde a través de un sistema de control que identifica al animal por radio frecuencia (RFID), WIFI o BLUETOOTH) y le proporciona la cantidad de alimento que el animal requiera.

fuente: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/6950/621815939.pdf?sequence=1&isAllowed=y

Antecedente 2

DISEÑO Y DESARROLLO DE PROTOTIPO AUTOMATIZADO DE COMEDERO PARA GANADO
MORENO DUQUE, Juan Carlos.
OSPINA, Juan David.
VILLAMIL PIRÁQUIVE, Mario Alejandro.
UNIVERSIDAD CATÓLICA DE COLOMBIA
FACULTAD DE INGENIERÍA
2014

El diseño del prototipo consta de tres partes fundamentales que son el sistemas mecánico y el sistema electrónico, a lo cual se asociara el desarrollo de la identificación del animal por medio del dispositivo RFID.

Realiza un escaneo de cada bovino a través del lector para activar el sistema electrónico de dosificación y por medio del mecanismo llegar a administrar el alimento al bovino.

fuente: http://repository.ucatolica.edu.co/bitstream/10983/2490/2/RAE.pdf

Ilustración 4 Antecedentes 1 y 2
Antecedente 3

Alimentador de ganado portátil y plegable

Patente

Alimentador de ganado portátil y plegable, está diseñado para que sea fácil de ensamblar y almacenar. Los paneles laterales del alimentador están articulados, fijados de forma pivotante, a un panel trasero de la estructura, y el fondo articulado también está unido al panel posterior. Una rejilla de alimentación mantiene una conexión pivotante horizontal inferior con el panel posterior.

fuente: https://www.uspto.gov/patents/resources/methods/afmdpm/examples/6070449.jsp

Antecedente 4

Vaca FEEDER Filed Feb. 26, 1954 Ava / xx Estados Unidos
Pat iDite COW FEEDER Agosto, Vandenberg y Ben W.
Vandenberg, Bellflower, Calif.

Alimentador para vacas lecheras, puede estar situado de tal manera que las vacas estén en puestos adyacentes pueden alimentarse simultáneamente.

Otro objeto de la invención es proporcionar un alimentador de vaca novedoso en el que la cantidad de alimento suministrado a una vaca puede variarse para adaptarse a los requisitos del animal particular.

Ilustración 5 Antecedentes 3 y 4

A partir de estas referencias se tiene en cuenta que la dosificación del alimento de manera controlada es un aspecto importante para aplicar en este proyecto, ya que permite un mejor aprovechamiento del alimento, garantizando una dosis exacta para cada animal evitando que
estos disminuyan de peso, también reduce los tiempos de los operarios y el sobre esfuerzo a los que normalmente son sometidos

En las imágenes también hay evidencias de procesos de semi automatización, materiales y diferentes formas al igual que estructuras que muestran niveles de innovación para facilitar el sistema de alimentación en los bovinos.

4.3 MARCO CONCEPTUAL

A continuación, se determinarán los conceptos y principios básicos que se tendrán en cuenta como base para plantear un diseño innovador y pertinente, tanto en el campo como en la industria, que supla los requerimientos básicos no solo del animal sino también del operario. Así los conceptos a abarcar son:

Bovinos, Alimentación bovina, tipos de alimento, métodos de alimentación, Transporte del ganado, Requerimientos del vehículo considerando el sistema de alimentación, efectos del transporte en el bovino, Ergonomía del trabajador, antropometría, manejo de alimento en ferias ganaderas, diseño y usabilidad.

4.3.1 Bovinos de la agropecuaria la Esperanza

En la Agropecuaria la Esperanza el tipo de ganado vacuno es el denominado Gyr.

Para ello esta raza en particular posee las siguientes características o parámetros:

Parámetros en GYR:

- El peso promedio de la vaca es de 450 a 500 kg y el del toro es de 800 kg.
- El peso de los becerros al nacer oscila entre 23 a 26 kg.
- La producción diaria de leche es de 9 a 12 litros en promedio.
- La edad al primer parto se enmarca entre los 36 a 40 meses.
- La longevidad de la vaca supera los 10 años de vida productiva\(^{a}\) (AsocebúColombia, S.A)

El cual es semiestabulado, este término indica que el animal pasa algún tiempo del día en el potrero y el otro resto en corrales bajo techo en donde se le administra la comida, dependiendo de la condición física del animal, hay algunos que requieren mayor alimento por no cumplir con el peso ideal que debería tener.
4.3.2 La alimentación bovina

La alimentación de los animales es fundamental no solo porque es una necesidad básica para sobrevivir, sino que la calidad de sus productos depende de las propiedades del alimento y la cantidad nutricional que requiera el bovino, para ello existen distintos métodos de alimentarlos y diferentes tipos de alimentos.

Métodos de alimentación

Según la revista digital Contexto ganadero existen tres métodos de alimentación para bovinos, los cuales son “evaluación del hato, análisis de forrajes y diseño de la ración a suministrar” (Contexto ganadero, 2015) afirmando que son los tres medios para disminuir los costos en alimentación, aprovechamiento y aumento de la producción.

El tercer método es el cálculo por porcentaje de peso del animal, este método es bastante efectivo por su precisión en donde:

“Típicamente, un bovino come entre 1,5 % y 3 % de su peso corporal al día, con un promedio de un 2,5 % de su peso, la medición promedio de comida a proporcionar a cada animal se calcula con el peso en libras o kilogramos del animal dividido en 0,025, lo que dará la ración total diaria a dar” (Contexto ganadero, 2015)

4.3.3 Tipos de alimento

Dentro de la alimentación Bovina existen diferentes tipos de alimento, se dan según su época de vida, su función, su peso, su estado reproductivo, su sexo y época del año, algunos son:

“Maíz”
Cifras de maíz en gran parte en la alimentación de determinados tipos de ganado de carne, como a segundo plano y acabado novillos y vaquillas.

El sorgo de grano y forrajes
Sorgo constituye otro gran parte de la alimentación de ganado vacuno determinados, y se puede administrar en cantidades aún mayores que cualquier maíz alimenta al ganado. Sorgo se puede administrar al ganado como grano o ensilaje, este último que es el forraje húmedo almacenado en silos” (GanadoBovino, 2012).

Adicional a la ingesta seca de productos se hace necesario que el animal también consuma vitaminas y minerales según su condición, por ende, el ganadero debe realizar chequeos
frecuentes a sus animales para determinar qué tipo de producto agregado al de consumo diario debe proporcionarle, teniendo en cuenta que ingiere alimento 5 veces al día.

4.3.4 Transporte del ganado
El transporte del ganado Bovino en este caso, es necesario para el proceso de participación en ferias de exposición, pero de igual manera se tiene en cuenta que cualquier tipo de desplazamiento es un medio de transporte, así que si se van a recorrer distancias cortas es mucho más cómodo y menos riesgoso para los animales desplazarse a pie, para distancias prolongadas se hace necesario un sistema de transporte con unas especificaciones determinadas para la comodidad de los animales.

El medio de transporte más común utilizado por los ganaderos en Colombia, son los camiones de barandas de madera, los cuales deben cumplir con unos requerimientos para velar por la buena salud del animal.

Alimento: cuando son trayectos extensos, se hace necesario que el vehículo porte un sistema de alimentación (comida y agua) para todos los bovinos que estén en él y cumpla con los requerimientos de cada ítem mencionado anteriormente para que sus condiciones no se alteren y no produzcan ningún daño al animal.

4.3.5 Antropometría
Para el diseño del sistema de alimentación se hace necesario tener un estimado dimensional de los animales y el operario, como se muestra en la siguiente
Ilustración 6 Medidas del bovino

Fuente: (Sánchez, 2010) recuperado de https://es.slideshare.net/nicolas00/establos

Para las acciones que realiza el operario se deben tener en cuenta los movimientos máximos en las articulaciones como se muestra a continuación

Ilustración 7 Movimientos de las articulaciones

Fuente: (Panero & Martin, 1996)

Las dimensiones humanas en espacios interiores
4.3.6 Manejo de alimento en ferias ganaderas

Las ferias Ganaderas son lugares donde se concentran ganaderos de todo el país y algunas veces internacionales, en donde se realizan comercializaciones de todo tipo de animales, exposiciones y concursos.

Estas ferias son organizadas con el fin de que productores, compradores y el público en general se enteren de las características de cada animal se pueden establecer contactos para una futura comercialización ya sea de producto o del mismo animal.

Dentro de las ferias hay varios tipos: las comerciales, las de subastas, las exposiciones (muestra genética de mejoramiento de la raza), ferias especiales como la expo ternera (en donde se exhiben animales jóvenes).

“Los eventos feriales son de gran importancia, ya que son espacios para mostrar al mundo el avance, el trabajo y la capacidad productiva de la ganadería bovina nacional, abriendo puertas a oportunidades de negocio y dándole al público la oportunidad de acercarse y conocer aspectos relevantes de la producción pecuaria.

La feria exposición, por su parte, promueve las razas puras y su potencial productivo, mediante la exhibición de ejemplares de alta calidad y pureza. En todas las ferias ganaderas se cumplen los objetivos primordiales de este tipo de eventos como concretar negocios y alianzas estratégicas, promoción de las empresas ganaderas de cada participante y evaluación del mercado existente y potencial” (SIPSA, 2013)

Dado que estas ferias son de gran importancia para los ganaderos y que según la contextualización de este proyecto la agropecuaria La Esperanza Participa de estas ferias determinando que para asistir a ellas debe considerar diferentes situaciones como:

- La alimentación adecuada en las dosis normales que pueda comer el animal estando en la agropecuaria
- La cantidad de ingesta de Agua.
- Los diferentes elementos que se deben transportar para ascender y descender correctamente al animal del vehículo
- Considerar el tiempo de viaje

Por otro lado, se debe tener presente los tiempos en el que la empresa viaja a ferias regionales para mejorar el rendimiento en la raza criada, ya que se debe de formar un equilibrio en
sustento de la agropecuaria y evolución de esta, buscando asistir a feriados con objetivo de ganar preferencia por parte de los compradores.

La producción del animal y la calidad de la raza, va directamente proporcional al sistema nutricional de los bovinos, del buen estado del animal, en condiciones de peso, aspecto y tranquilidad del mismo es fundamental para la participación en ferias.

A la hora de ser partícipes de los eventos, hay aspectos importantes a tener en cuenta antes y el después de la secuencia de alimentación bovina, los cuales son:

- La alimentación sana y sin conservantes.
- Debe evitarse el estrés del animal
- El buen manejo del bovino
- La implementación de elementos que proporcione mejor manejo animal sin causar lecciones o desespero en él.
- Proporción del operario al suministrar líquidos y alimentos al bovino mientras este permanece en el establo.

Las condiciones de estrés harán que el animal no se aliente de manera adecuada y es susceptible a perder peso en poco tiempo, afectando la participación en el evento.

4.3.7 diseño y usabilidad.

La principal característica que aporta el diseño industrial a la generación del sistema de alimentación bovina es aplicar las herramientas más destacadas para mejorar la usabilidad y la interacción entre el sistema y el operario, de igual forma entre el sistema y el bovino, teniendo en cuenta conceptos como modularidad, ya que a través de la aplicación formal modular se puede realizar un diseño más compacto, de fácil transporte y necesariamente intuitivo.

El modularidad es la característica general de que una pieza cumpla con la función y requerimientos de ser un módulo y el concepto de este, hace referencia a una forma determinada por el diseñador la cual se repite en la composición general del producto.

Esta aplicación se realiza con el fin de “unificar el diseño” (Wong, Fundamentos del diseño, 1995), hacer de un conjunto de objetos un mismo lenguaje e integración, estos deben ser
simples para cumplir su función de uso y fácil entendimiento por el usuario y en el caso particular de a forma de ensamble.

Los módulos pueden tener variaciones determinadas por su aplicación, para distinguir o direccionar una pieza de otra, se pueden presentar variaciones de dirección, textura, color, tamaño, pero nunca perdiendo cualidades formales que la identifiquen como parte del sistema.

Este término hace referencia a la posición y distancia en las que pueden ser ubicados los módulos, si estos están dispuestos de manera continua a una distancia reducida, generan en su conjunto una estructura que puede visualizarse integralmente como una forma determinada.

Así este tipo de planos son utilizados para sostener estructuras, sin incrementar el volumen creando una forma sólida, generando una pieza ligera y funcional.

4.4 MARCO LEGAL

El Ministerio de Agricultura Colombiano mediante diferentes leyes y decretos ha dado las pautas y disposiciones necesarias para desarrollar una buena y sana alimentación del ganado bovino en condiciones óptimas de los comederos, entre las cuales se encuentran:

Los comederos deberán ser lo suficientemente grandes para que el ganado tenga suficiente acceso al alimento, y deberán estar limpios y con alimento en buen estado sin moho, sabor agrio, grumos o sabor desagradable. El ganado vacuno deberá tener acceso a una fuente de agua en todo momento (Código sanitario para los animales terrestres, artículo 7.9.3, 2016)

“Las exigencias nutritivas del ganado vacuno de carne están bien definidas. El contenido energético, proteínico, mineral y vitamínico del alimento es un factor determinante esencial del crecimiento, el índice de conversión, el rendimiento reproductivo y la composición corporal”.
Se deberá brindar al ganado el acceso a una ración alimentaria equilibrada, adaptada cualitativa y cuantitativamente a sus necesidades fisiológicas”. (Código sanitario para los animales terrestres, Artículo 7.9.5, 2016)

“La densidad de población deberá organizarse para que no se produzca un hacinamiento que influya negativamente en el comportamiento normal del ganado. Esto incluye la capacidad de echarse libremente sin riesgo de lastimarse, desplazarse por el corral y tener acceso al alimento y al agua”. (Código sanitario para los animales terrestres, Artículo 7.9.5, 2016)

“Los animales domésticos perciben una gama de frecuencias mayor que las personas y son más sensibles a las frecuencias más altas. Tienden a alarmarse ante un ruido fuerte y constante y ante ruidos repentinos, que pueden ocasionarles pánico. La sensibilidad a este tipo de ruidos también deberá tenerse en cuenta cuando se manipule a los animales”. (Código sanitario para los animales terrestres, Artículo 7.3.2, 2016)

NOM-024-ZOO-1995 Especificaciones y características zoosanitarias para el transporte de animales, sus productos y subproductos, productos químicos, farmacéuticos, biológicos y alimenticios para uso en animales o consumo por estos.

Estas normas se establecen en este documento debido a que se deben de tener en cuenta en el momento del desarrollo del diseño, ya que a través de ellas se garantiza que los comederos sean productos seguros, con normas de higiene y manipulación adecuada, que el animal se sienta cómodo y su salud sea la apropiada.

5. ÁNALISIS E INTERPRETACIÓN DE DATOS

En el desarrollo de la investigación se realizó una recopilación de datos a partir de entrevistas, encuestas realizadas a expertos en el tema y operarios involucrados según la trascendencia de sus vidas y trabajo de campo, se arrojan datos importantes para la investigación, teniendo
como objetivo principal la identificación de la problemática y puntos importantes a tener en cuenta para el diseño.

Se preguntó a los operarios que cantidad de canecas usaban en la agropecuaria para determinar la cantidad de sistemas de alimentación que se deben implementar, su respuesta fueron 30 canecas, proporcional a la cantidad de bovinos que se tengan, las cuales deben transportar en el momento de asistir a una feria y genera un sobre esfuerzo en los operarios y un exceso de espacio ya que la forma de las canecas no optimiza este. El tiempo de carga del camión es una problemática con la que cuenta en la actualidad, el día de trabajo en los momentos de feria debe ser utilizado en gran parte al cargue del camión, como se evidencia en la encuesta realizada donde el 100% de los encuestados afirman que; es posible reducir el tiempo de carga si las canecas de alimento fuesen más fácil de acomodar en el interior del camión doble propósito.

La mayor problemática para la Agropecuaria la Esperanza en los días de feriado es la organización de los elementos que debe cargar en él, para ello fue necesario realizar un trabajo de campo participativo que se confirma con los resultados de esta encuesta donde se hace evidente que los objetos que presentan mayor problemática a la hora del cargue y descargue del camión son las canecas de almacenamiento y los comederos con los que cuenta la empresa, ya que ocupan gran parte del camión y son indispensables para la estadía del animal en la feria.

Conocer quién es el usuario directo del producto a diseñar es fundamental en el proceso de esta investigación que dará por resultado un elemento funcional, el cual debe ser manipulado por la persona encargada del montaje o en su defecto el encargado de la empresa, saber su perfil, sexo, antropometría y conocimientos es primordial a la hora de diseñar, es por ello que se formula la pregunta 5, donde se determina el usuario a estudiar en donde se evidencia que hay 6 operarios encargados y 1 persona como administradora de la agropecuaria.

En conclusión, luego de analizar los datos arrojados por la encuesta, se establece que es posible hacer una intervención a manos del diseño industrial para trabajar en las falencias identificadas en cuanto al transporte para ferias de exposición ganadera y al mismo tiempo
aplicar todo el proceso metodológico que conlleva este proceso, iniciando por acotar la propuesta en la investigación realizada anteriormente en el marco conceptual, generando un enlace entre la teoría y la práctica.

5.1 TRABAJO DE CAMPO

ANÁLISIS DE LOS SISTEMAS DE ALIMENTACIÓN ACTUAL
Caneca de alimento y Comedero
Agropecuaria la Esperanza

En las fotografías se evidencia los sistemas de alimentación actual, se hace referencia a la diferencia entre caneca de alimento y comedero para efectos de este proyecto, nombrado de esta manera por los trabajadores del caso de estudio.

Las problemáticas encontradas al analizar los sistemas de alimentación corresponden a:

1. **La estabilidad del comedero**: lo que acarrea el desperdicio de alimento y atraso del animal por no consumir la totalidad de la porción alimenticia diaria.
En la fotografía la estabilidad de la caneca no es apropiada para el uso del animal, durante el proceso de alimentación la vaca tiende a voltear la caneca, y luego de que el alimento cae al piso no puede ser consumido por el ganado.

2. **La movilidad del comedero:** Cuando el comedero requiere ser llevado a otro lugar, la estructura metálica no permite ser desensamblada, lo que ocupa demasiado espacio en el camión, lo que implica que la agropecuaria lleve solo la caneca, acarreando mayor desperdicio de alimento.

En las imágenes anteriores se identifican el espacio que ocupan estas estructuras lo que impide por costos de transporte ser llevada a las ferias de exposición.
Las dimensiones de los establos son: 3 metros frontales, 4 metros de profundidad.

3. **El apilamiento en el camión doble propósito:** Los resultados que arroja esta investigación determinan que el proceso de montaje y desmontaje del camión es una labor que implica horas adicionales de trabajo a los operarios por la complejidad del apilamiento de los elementos necesarios en la feria.

![Ilustración 13 Montaje del camión](image)

![Ilustración 14 Apilamiento del camión.](image)

![Ilustración 16 Buscando el apilamiento adecuado.](image)

![Ilustración 15 Apilamiento de canecas.](image)

Las canecas de alimento y agua deben ser amarradas con cuerdas al camión para evitar que estas caigan y lesionen al ganado, pero este procedimiento genera ruidos durante el transporte lo que lleva que el ganado se estrese, con el agravante que pueden soltarse y maltratar el ganado.
Ilustración 17 Ciclo de uso de la caneca convencional.

Ilustración 18 Planimetría del contexto.
4. **Costo de los sistemas de alimentación actual:** la caneca de alimento que se puede apreciar en las fotografías tiene un costo de 40 a 50 mil pesos por caneca, sin contar con el costo del soporte metálico y el trabajo de corte y adecuación que requiere, el comedero comercial tiene un costo de 150 mil pesos, sumado a estos gastos la caneca para el agua la cual tiene un costo de 15 mil pesos la unidad, estos costos son por cabeza de ganado ya que se requiere un sistema para cada animal.

A partir del análisis del contexto se hace un diagrama para dar claridad de la situación y el proceso que se lleva a cabo, identificando problemas y subproblemas de la alimentación.

Gráfico 1 Alimentación del ganado bovino

- **El tiempo del suministro del alimento es exhausto**
- **El espacio reducido del establo**
- **El contenedor no cubre con las proporciones sanitarias adecuadas**
- **El espacio es reducido para la cantidad de 5 a 10 operarios**
- **Fatiga laboral si la vaca tiene temperamento alto el tiempo es mas al debido no permite el mov. continuo y espacioso de la vaca**
- **La cantidad de alimento es contaminado por la vaca**
- **Desperdicio del alimento**
- **Desperdicio de alimento en costo aumentado al igual que el costo no proporcional para la adquisición de mejores comederos.**
- **Discusiones entre los operarios**
- **No hay coordinación de la actividad e montaje**

Fuente: Elaboración propia
Uno de los elementos más relevantes de la problemática es la usabilidad de dichos comederos, que lleva a agotamiento físico y a desperdicio de material; en el cuadro siguiente se describe partes de la actividad física en las que se ve implicado el operario.

Ilustración 19 Usabilidad de los comederos.

Ilustración 20 Uso de la caneca convencional

Gráfico 2 Actividad Física Montaje y Desmontaje del Camión
ACTIVIDAD FÍSICA
MONTAJE Y DESMONTAJE DEL CAMIÓN

- LAS CANECAS NO ESTÁN PROPORCIONANDO EL AGARRE DEL OPERARIO
 - FATIGA LABORAL
 - DOLOR DE ESPALDA Y BRAZOS
 - BAJO RENDIMIENTO LABORAL
- SE PUEDEN LASTIMAR LOS OPERARIOS
 - GASTOS NO CONTADOS PARA LA EMPRESA
 - DEFICIENCIA EN EL RENDIMIENTO OPERARIO
 - NO HAY COORDINACIÓN EN LA ACTIVIDAD DE TRANSPORTE
- EL TIEMPO ES DESPERDICADO
 - SE DESCUIDA LA RUTINA LABORAL POR SOLO ESTAR EJERCiendo UNA ACTIVIDAD EN EL DÍA
 - EL OBJETO NO ES ADECUADO PARA APILAR
 - SE NECESITA DE MAS TIEMPO AL DESTINADO A LA ACTIVIDAD PARA ENCONTRAR LA FORMA ADECUADA DE MONTAJE
- EL ESPACIO ES REDUCIDO PARA LA CANTIDAD DE 5 A 10 OPERARIOS
 - DISCUSIONES ENTRE LOS OPERARIOS
 - NO HAY COORDINACIÓN DE LA ACTIVIDAD E MONTAJE

Fuente: Elaboración Propia
Ilustración 21 Análisis etnográfico del operario.
6. ANÁLISIS DE TIPOLOGÍAS

A continuación, se muestran las tipologías a tener en cuenta determinando su importancia o representación con un nivel determinado del 1 al 3, siendo 1 muy cercano e igual a la propuesta que se quiere llegar, 2 un proyecto similar en otras especies, 3 elementos que se pueden aplicar aun siendo de otros ámbitos al proyecto en cuestión, a partir de dos atributos la estabilidad, los materiales, formas y adaptabilidad.

Ilustración 22 Tipologías 1

Fuente: Elaboración propia basada en búsqueda de imágenes en buscadores
Se realiza una curva de valor a partir de los atributos encontrados en los recipientes que usa la agropecuaria la Esperanza y en la información suministrada por el operario.
Para concluir la imagen anterior, se puede evidenciar que la gama de comederos implementados por la agropecuaria la Esperanza, están ocasionando un desperdicio en el alimento por ser sobrepuestos en el establo, generando una elevación de costos e incremento de alimento sin suministro eficaz, ninguno promueve la seguridad ni la espacialidad en el contexto; el tamaño y medidas de la tipología 4, esta es tomada como referente para la elaboración de la bandeja de alimento en prototipo.

Ilustración 24 Curva de valor
7. METODOLOGÍA DE DISEÑO

La metodología que se aplicará para llevar un proceso secuencial y apropiada, es la denominada diseño centrado en el usuario, ya que permite desarrollar el proyecto en base a la funcionalidad adecuada y las necesidades encontradas por medio de la indagación del usuario directo e indirecto a intervenir, el objetivo se plantea a partir de la usabilidad específica del objeto, la acción o función que va a desempeñar y que adiciones se necesitará para alcanzar las expectativas. Para así generar la mejor experiencia al usuario.

Como lo menciona Muriel Garreta (2001) en su texto Diseño Centrado en el Usuario, esta metodología consiste en “una aproximación al diseño de productos y aplicaciones que sitúa al usuario en el centro de todo el proceso” (pág. 52); mediante el cual se conocen todas y cada una de las consideraciones y necesidades que el usuario tiene, para lograr satisfacerla con la respuesta final y de esta forma brindar una correcta experiencia de uso. De esta manera se puede entender el DCU, Diseño Centrado en el Usuario, como una filosofía cuyo principio fundamental es priorizar que “para garantizar el éxito de un producto, hay que tener en cuenta al usuario en todas las fases del diseño.” (Muriel & Mor Pera, 2001)

Una de las consideraciones de esta metodología se enfoca en el factor humano, el cual estudia el papel de los seres humanos en los sistemas persona-máquina y cómo dichos sistemas pueden funcionar bien en relación con las personas, especialmente en relación con la seguridad y la eficiencia. En este caso, se abordará el tema del factor humano desde dos perspectivas, la primera, teniendo en cuenta el usuario que hace relación con el artefacto mediante la acción de proporcionar el alimento al animal y en el momento de montaje y desmontaje de este al ser trasladado hacia el camión, siendo el usuario directo el cual debe de realizar varias acciones que son importantes para el manejo del elemento teniendo en cuenta, a la hora de diseñar, como los agarres, la manipulación, la carga, los alcances entre otras; y la segunda perspectiva se tomará desde el animal, quien hace la acción de alimentarse y relacionarse también directamente con el artefacto.
A continuación, se muestra el gráfico de la metodología a utilizar donde antes y después de cada etapa se hace una validación con el usuario en el trabajo de campo, para así tener en cuenta todas sus necesidades y la forma como interpreta las soluciones propuestas, de esta forma es posible considerar que la respuesta final atenderá sus necesidades de forma óptima y responsable.

Ilustración 25 Metodología de diseño

Fuente: Elaboración Propia basado en (Garreta, Mor 2011), Diseño centrado en el usuario, UOC, Cataluña.
7.1 REQUERIMIENTOS

Los requerimientos se construyen a partir de los objetivos específicos con la finalidad de garantizar su cumplimiento y a su vez se vea reflejado en la construcción objetual.

Objetivo específico 1: Realizar un elemento que facilite el suministro de alimento por medio de piezas modulares que reduzcan el espacio y el peso para el operario y genere estabilidad evitando derrames del alimento.

Tabla 1 Requerimiento objetivo 1

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Factor determinante</th>
<th>Parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicidad</td>
<td>Debe permitir el montaje y desmontaje fácilmente en el menor tiempo posible para disminuir fatiga laboral y tiempos excesivos.</td>
<td>Todos los componentes del sistema no pueden sobrepasar 12 kilogramos de peso.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Debe estar a 170 cm del piso para permitir el alcance del producto, sin sobrepasar el establo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Se deben realizar uniones modulares que encajen de manera fácil para su ensamble, sellándose con tornillos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medidas antropométricas del bovino: 120 m – 230 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medidas antropométricas del operario: 160 m – 90 cm.</td>
</tr>
<tr>
<td>Uso</td>
<td>Debe cumplir con las medidas apropiadas para el usuario directo e indirecto.</td>
<td>El contenedor de alimentación no debe sobrepasar las medidas del establo, conservando posición y altura de la bandeja de alimento.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Debe dosificar 8 kg y contener 40 kg de alimento.</td>
</tr>
<tr>
<td>Portabilidad</td>
<td>Debe aptarse a espacios frecuentados por la</td>
<td>Utilizar elementos modulares para su fácil uso y transporte.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Materiales asépticos como el plástico que sean livianos para su manipulación

Mecanismos que permitan el despliegue del artefacto, uniones, pestañas y agarraderas

Objetivos específico 2: Implementar en las piezas modulares características de adaptabilidad que permitan el montaje y desmontaje rápido del mismo, disminuyendo el tiempo del operario en la instalación del sistema.

Tabla 2 Requerimientos objetivos 2

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Factor determinante</th>
<th>Parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantenimiento</td>
<td>Sus piezas deben permitir una fácil limpieza que puedan ser reemplazadas fácilmente.</td>
<td>Utilizar uniones selladas al contacto con el entorno exterior, como soldadura, ganchos o pines para remplazar las uniones de las piezas o producir presión en las piezas.</td>
</tr>
<tr>
<td>Unidad</td>
<td>Todas las piezas deben verse como un conjunto de elementos de un mismo producto</td>
<td>Utilizar formas, colores y materiales congruentes con la función e identificación del producto.</td>
</tr>
<tr>
<td>Seguridad</td>
<td>Debe permitir su uso sin producir ningún tipo de daño físico ni al operario ni al animal</td>
<td>Utilizar elementos semi monolíticos, sin bordes ni aristas vivas que puedan causar laceraciones en los usuarios.</td>
</tr>
</tbody>
</table>

Objetivo específico 3: Considerar costos asequibles para el ganadero, utilizando elementos que no sobrepase el valor que maneja la agropecuaria la Esperanza, para que sea un sistema de aplicación inmediata.
Tabla 3 Requerimientos objetivo 3

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Factor determinante</th>
<th>Parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciclo de vida</td>
<td>Se debe utilizar materiales de alta calidad que conserven una vida útil prolongada, usándose diariamente y manteniendo en buenas condiciones el alimento. El mecanismo debe durar 3 años sin reparación. El contenedor debe resistir 2 años a las condiciones mecánicas de trabajo diario.</td>
<td>El mecanismo debe durar 3 años sin reparación. El contenedor debe resistir 2 años a las condiciones mecánicas de trabajo diario.</td>
</tr>
<tr>
<td>Precio</td>
<td>El precio de la inversión que realice la agropecuaria debe ser asequible para ellos. El precio estimado por cada uno de los sistemas de alimentación está oscilando entre $400,000 y $600,000</td>
<td>El precio estimado por cada uno de los sistemas de alimentación está oscilando entre $400,000 y $600,000</td>
</tr>
</tbody>
</table>

7.2 CONCEPTO DE DISEÑO

A través de este concepto se aplicará al diseño del sistema de alimentación, estrategias de concientización para los operarios y los dueños de la agropecuaria, de que las vacas son productos sustentables para la empresa, lo cual, quiere decir que son un producto fundamental para la misma y por ende se debe velar por su seguridad integral, partiendo desde la adecuada alimentación hasta el confort del mismo.
7.3 ALTERNATIVAS DE DISEÑO

Alternativa 1
Contenedor, dosificador con tapa para proteger el alimento, su soporte está en el establo para darle mayor espacio a la vaca para su desplazamiento, proporcionándole al operario mayor alcance al sistema de alimentación y siendo más estable para evitar derramamientos.
Alternativa 2
Contenedor en forma flexible en lona impermeable con cierre tipo cremallera que evita la humedad y mantiene el alimento aislado de la intemperie, estructura en aluminio, que permite mantener la forma, soporte curvo que proporciona estabilidad al momento de que el animal se alimenta, palanca que dosifica el alimento con accionamiento manual.
Alternativa 3
Contenedor dosificador portable, dispuesto en la viga del establo, accionado manual, de fácil limpieza debido a su sistema de despliegue, posee una tapa con su respectiva manija para facilitar su acceso.
Alternativa 4

Contenedor cilíndrico, dosificador de diferentes cantidades (kg) con tapa y sellado en su salida, para proporcionar su traslado fácilmente, dosifica su contenido y todo el sistema se encuentra soportado en el establo para proporcionar mayor estabilidad y aprovechar el espacio.

Su mecanismo se activa accionando una palanca lateral que alinea el contenedor con el dosificador dando paso al alimento, asegurando que el concentrado desciende correctamente, debido a las intersecciones (conos) internos del elemento.

Ilustración 30 Render alternativa 4
A partir de la evaluación con expertos se concluye que se hace necesario la dosificación en diferentes kg, lo que pueda permitirle al objeto ser variante en posicionamiento de las diferentes actividades y contextos evidenciados por la agropecuaria la Esperanza, en donde la alimentación haga parte de dicha acción, de igual forma se tiene en cuenta que el objeto debe ser un objeto complejo y que para lograr esto la bandeja o caneca de alimentación debe de ir anexada al sistema, llegando a simplificar el desperdicio en el suministro alimenticio y en la forma comer en los bovinos.

Alterativa 5

Mecanismo dosificador dividido en 4 partes, cada una conteniendo 1 kg para hacer del dosificador multifuncional en diferentes cantidades, según la función estipulada por el
usuario, accionar la palanca determina la cantidad necesaria dividida en las veces que se ejerce la fuerza en la palanca por 1 kg de 4 contenedores.

Alternativa 6

Contenedor dosificador en 1 kg en la posibilidad de ser multifuncional en cuanto al propósito del usuario; con tapa cerrada para que el alimento no tenga contacto alguno con la intemperie después de ser suministrado en el objeto, compuesto por tres componentes los cuales cumplen funciones distintas; contener, dosificar y alimentar, convirtiéndose en un elemento monolítico para ser practica y simple en cuestiones de traslado.

Su mecanismo es accionado por una palanca en dos puntos de apoyo y estructurado a una base ya antes sujeta al establo, por medio de tornillería, proporcionando seguridad y estabilidad a la salida al alimento en un Ángulo de 85 grados y cerrando la salida de la tolva para tener la seguridad de que la porción suministrada sea la acertada para la buena alimentación en bovinos.
7.4 EVALUACIÓN DE ALTERNATIVAS MATRIZ ANÁLISIS COMPARATIVO

Para respaldar la selección de la alternativa adecuada, se plantean unos criterios importantes que se deben tener en cuenta para ser aplicados a la propuesta final y para ello se realiza una evaluación cuantitativa de ciertas características fundamentales de los requerimientos de diseño, del 1 al 5 donde uno es deficiente y 5 eficiente.
Según la evaluación de la matriz de análisis, se concluye que la alternativa seis cumple con los requerimientos de diseño acorde a las necesidades del usuario y criterios evidenciados en la agropecuaria la Esperanza, para ser desarrollada como propuesta final.

Tabla 4 Matriz evaluativa.

<table>
<thead>
<tr>
<th>Criterio que surgen de tipologías y curva de valor</th>
<th>Alternativa 1</th>
<th>Alternativa 2</th>
<th>Alternativa 3</th>
<th>Alternativa 4</th>
<th>Alternativa 5</th>
<th>Alternativa 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estabilidad</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Almacenamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergonomía</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptabilidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Función</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estructura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>16</td>
<td>21</td>
<td>26</td>
<td>16</td>
<td>31</td>
</tr>
</tbody>
</table>

7.5 DISEÑO DE DETALLES

A partir de la propuesta determinada se realizan gráficamente los elementos o detalles que debe contener el producto final. Considerando que debe respetar dichos detalles ya que hacen parte del funcionamiento adecuado según la evaluación de alternativas.
Ilustración 34 Llenado del dosificador

Ilustración 35 Llenado del dosificador
Ilustración 36 Mecanismo de funcionamiento en el dosificador

Ilustración 37 Mecanismo de funcionamiento en el dosificador
Diseño del mecanismo dosificador de alimento con acción manual, su funcionamiento se basa en la gravedad ejecutándose por medio de una palanca que genera movimientos lineales en dos direcciones, abriendo y cerrando el contenedor interno.

La capacidad de esta es rígida, suministra exactamente 1 kg de alimento, al estar la base interna dosificando la porción necesaria, la parte superior cierra la tolva para no dejar salida directa al contenido, demostrado en la imagen 32, al devolver la palanca da paso al llenado del dosificador, evidenciado en la imagen 33, siendo esta la más acertada en las funciones de alimentación en la agropecuaria; los resortes ubicados en los dos puntos de apoyo de la palanca permiten que esta retome su ubicación inicial para que el operario no genere dos fuerzas al mismo tiempo, tomando la acción como una fuerza más que se genera en el operario mostrado en la imagen 34.

7.6 MODELOS Y SIMULADORES

En esta fase se realizan comprobaciones formales de la propuesta definitiva, teniendo en cuenta su funcionalidad y acercándose al material real que llevará el diseño final que plantea este proyecto.
Simulador de tolva en lata galvanizada para confirmación de área por volumen en densidades del alimento.

Acercamiento del mecanismo de dosificación para alternativa 1 Simulador del mecanismo dosificador de 8 kg, que posibilita el abrir y el cerrar la tolva, al ejercer una fuerza para accionar su funcionamiento en rotación a un eje, asegurando que el contenedor se alinea al dosificador llenando la cantidad estipulada después de dar la salida a la bandeja de alimentación.
Mecanismo para tolva

Mecanismo de cierre para la tolva como contenedor, con acción manual para hacerla transportable al depósito de alimento y ser llenada ahí, haciendo de su traslado más eficiente sin derrames de alimento.

![Ilustración 41 Mecanismo para cierre de tolva.](image)

Mecanismo dosificador interno para la alternativa 5

Diseño de mecanismo dosificador de 8 kg dividido en cuatro compartimentos de 1 kg cada uno, su funcionamiento es debido a las veces accionada la palanca de rotación; 2 veces de accionamiento es igual a 8 kg de dosificación en suministro de bandeja de alimentación.
7.7 PROPUESTA FINAL

La propuesta definitiva responde a todo el proceso metodológico que se muestra en este documento, contiene la aplicación directa de los requerimientos de diseño, la investigación adecuada para cumplir con su función y todo el estudio etnográfico que permitió la comprensión de la necesidad y su importancia.
El diseñar un sistema de alimentación complejo facilita el suministro del alimento en cantidades exactas, donde la tolva tiene como función contener 40 kg, cantidad de alimento dado en el día para los bovinos, el dosificador facilita la secuencia de suministro porcionando la comida sin máximo esfuerzo, el cual es puesto en la bandeja de alimento para ya ser digerido por las vacas sin presentar algún desperdicio
El adherir el objeto a un carro de movimiento facilita el transporte de este al camión desarmando sus piezas para el montaje y desmontaje en feria.
7.8 RENDER PROPUESTA DEFINITIVA

La siguiente imagen representa el modelo digital de la propuesta definitiva, fue realizado en el programa de modelado Autodesk inventor.
7.9 SECUENCIA DE USO

Para la comprensión del producto a diseñar se requiere la realización secuencial de interacción entre el objeto usuario, por ende, a continuación, se muestra el paso a paso para hacer uso del sistema de alimentación bovino que plantea este proyecto.
Ilustración 45 Secuencia de uso alimenticio.
Ilustración 46 Instalación del sistema.

1. Atornillado de la base
2. Atornillado del dosificador a la bandeja.
3. Fijación de las piezas a la base
4. Posicionamiento de la tolva al sistema
7.10 PLANOS TÉCNICOS

A continuación, se adjuntan imágenes de los planos técnicos con medidas en milímetros y adjuntadas de manera que se pueda observar su forma general pero no evidenciar medidas reales por cuestiones de protección del proyecto.

Ilustración 47 Planos técnicos abrazadera.
Ilustración 48 Planos técnicos bandeja.
Ilustración 49 Planos técnicos base dosificador.
Ilustración 50 Planos tecnicos contenedor
Ilustración 51 Planos técnicos dosificador
Ilustración 52 Planos tecnicos dosificador interno
Ilustración 53 Planos tecnico llantas
Ilustración 54 Planos tecnicos manija
7.11 DESPIECE

En las siguientes imágenes se muestra una vista explosionada de toda la composición del producto, donde se puede observar las diferentes piezas que componen el sistema, generado el usuario mayor entendimiento del sistema complejo.

Ilustración 55 Despiece del sistema de alimentación bovina
7.12 PROCESO PRODUCTIVO
Para la realización de este producto se necesitó de un proceso constructivo dividido en 6 fases, en las cuales se tienen en cuenta desde la concepción del producto hasta el proceso de compra del mismo, detallado en la siguiente ilustración.

7.13 MATERIALES
Para el diseño del sistema de alimentación para bovinos se hizo necesario la siguiente tabla de materiales, en la cual se establecen las referencias y precios comerciales por unidad de cada objeto a utilizar, con la finalidad de entender la cantidad de piezas que requiere el diseño en su conjunto y una estimación de costos.
Tabla 5 Materiales del producto

<table>
<thead>
<tr>
<th>Material</th>
<th>Referencia</th>
<th>Precio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filamento Pla</td>
<td>1 kg 1.75 mm</td>
<td>$140.000</td>
</tr>
<tr>
<td>Abs</td>
<td>1.75 mm 300 m</td>
<td>$140.000</td>
</tr>
<tr>
<td>Tornillos</td>
<td>8 mm x 15 largo Cabeza Bristol</td>
<td>$300 c/u</td>
</tr>
<tr>
<td>Cierre tipo rápido</td>
<td>2.8 cm x 4.5 cm</td>
<td>$10.000 c/u</td>
</tr>
<tr>
<td>Tubo en acero</td>
<td>1” macizo x 40 cm</td>
<td>$22.000</td>
</tr>
<tr>
<td>Resorte</td>
<td>2 Externo de media</td>
<td>$4.000 c/u</td>
</tr>
<tr>
<td>Lamina de acero</td>
<td>2 m x 2</td>
<td>$22.000</td>
</tr>
<tr>
<td>Tornillo Con tuerca</td>
<td>44 de ¼ Cabeza Bristol</td>
<td>$400 c/u</td>
</tr>
<tr>
<td>Varilla en acero</td>
<td>10cm de largo</td>
<td>$8.000</td>
</tr>
<tr>
<td>Platina de hierro</td>
<td>50x50 cm HR 1/4</td>
<td>$20.000</td>
</tr>
<tr>
<td>Pintura</td>
<td>Amarilla 1/2 Negra Gris litro para acabados</td>
<td>$18.000</td>
</tr>
<tr>
<td>Soldadura</td>
<td>6011 1 lb</td>
<td>$4.000</td>
</tr>
<tr>
<td>Llantas en nylon</td>
<td>2 de 15 cm externo</td>
<td>4000 c/u</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Eje en acero</td>
<td>5 octavos x 10 cm</td>
<td>$10.000</td>
</tr>
<tr>
<td>Mecanizado en torno</td>
<td>X hora / 2</td>
<td>$15.000</td>
</tr>
<tr>
<td>Thinner</td>
<td>½ litro</td>
<td>$15.000</td>
</tr>
<tr>
<td>Abrazadera rápida</td>
<td>70 x 30 cm</td>
<td>$20.000</td>
</tr>
</tbody>
</table>

7.14 PROTOTIPO

Prototipo final, realizado a partir de la metodología, diseño centrado en el usuario, la cual permitió identificar una necesidad específica dada por dicho cliente (ganadero), el cual aporta al sector agropecuario la alimentación adecuada de los bovinos tanto en ferias nacionales como en el espacio de la finca.

A continuación se muestra el prototipo y escenario planteado para la exposición de su funcionamiento:

![Ilustración 57 exposición final del prototipo](image-url)
7.15 COSTOS DE PRODUCCIÓN

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Porcentaje</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de obra</td>
<td>30%</td>
<td>$65.000</td>
</tr>
<tr>
<td>Materiales</td>
<td>30%</td>
<td>$400.000</td>
</tr>
<tr>
<td>Imprevistos</td>
<td>10%</td>
<td>$7.000</td>
</tr>
<tr>
<td>Utilidad</td>
<td>20%</td>
<td>$100.000</td>
</tr>
<tr>
<td>Gastos fijos</td>
<td>10%</td>
<td>$10.000</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>$ 582.000</td>
</tr>
</tbody>
</table>

A continuación se establece el precio estipulado del sistema por lo cual el objeto final todavía sigue en construcción, los costos se obtendrán al culminar el prototipo final, en demostración de gastos de material y mano de obra estipulada, para tener un resultado aproximado.
7.16 VIABILIDAD COMERCIAL

En la siguiente tabla se realiza un comparativo del diseño que se realiza en este proyecto y el sistema de alimentación que utilizan actualmente, con el propósito de analizar desde seis criterios fundamentales, que se convierten en requisitos del producto la diferencia entre ambos y estimar cuál de los dos productos ofrece un beneficio aparente desde su descripción.

Tabla 6 Comparación

<table>
<thead>
<tr>
<th>CRITERIO</th>
<th>DISEÑO PROPIO</th>
<th>CANECA ANTIGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMACENAMIENTO</td>
<td>El alimento no tiene contacto con la intemperie en ningún momento, ni cuando es suministrado al contenedor ni cuando se está dosificando.</td>
<td>No existe un almacenamiento real, el alimento simplemente queda expuesto al medio ambiente las horas en que la vaca no lo ingiera.</td>
</tr>
<tr>
<td>HIGIENE</td>
<td>El alimento no tiene contacto con las bacterias del medio ambiente, ni la humedad. El material del cual está hecho el sistema de alimentación.</td>
<td>Al estar expuesto el alimento tiende a contaminarse y a propagarse de hongos, bacterias y demás animales, haciendo que el alimento se desperdicie.</td>
</tr>
<tr>
<td>RESISTENCIA</td>
<td>Los materiales empleados para la elaboración del objeto son: aluminio, acrílico, remaches y tornillos en acero, lo que hace que sea resistente.</td>
<td>El plástico hace de este sistema de alimentación resistente a golpes, a condiciones de desgaste y maltrato en el uso, utilizado dentro del establo, pero su misma resistencia y forma no lo deja ser completamente estable.</td>
</tr>
<tr>
<td>ERGONOMÍA</td>
<td>El artefacto es completamente desarmable permitiéndole al operario transportar el contenedor de una manera más fácil y al mismo tiempo suministrar el alimento de forma eficaz, al igual que su mecanismo al accionarse a través de una palanca que abastece la caneca evitando que el operario tenga que cargar 40 kg diarios alimentando al animal. Al ser la caneca rígida y de medias extensas, impiden que el operario traslade el elemento con facilidad y aplicabilidad, siendo el material de este un factor negativo que provoca deslizamiento del artefacto, su posición en el establo produce dolores de espalda en el operario por estar suministrando el alimento fuera de su alcance.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>PRACTICIDAD</td>
<td>El sistema de alimentación, dosifica el alimento en diferentes porciones kg la que se desee, al igual que contiene el material e integra la caneca para el suministro adecuado, totalmente funcional, de igual manera que le aporta al ganadero poder desplazar el elemento a ferias de exposición economizando con su uso el desperdicio y tiempo en recorrido para el suministro. Es funcional, aunque no destinado para ser un elemento de alimentación, aunque no dosifica ni cubre el desperdicio del alimento por lo cual la vaca no hace uso adecuado de este.</td>
<td></td>
</tr>
<tr>
<td>INNOVACIÓN</td>
<td>Es un objeto diferente que logra integrar las 3 funciones a la vez, contener, dosificar y alimentar, es un objeto monolítico, permitiendo una alimentación adecuada para el animal y beneficioso para el operario. Es un elemento convencional, que no tiene modificaciones, siempre es igual y hace que no exista una evolución ni sea una innovación implementarlo.</td>
<td></td>
</tr>
</tbody>
</table>
7.17 VIDEO DE COMPROBACIÓN

Para la demostración del prototipo final, se dará espera a la 70 feria nacional Cebú de Pereira- Colombia 2017 del 29 al 3 de diciembre por Fedegan, haciendo de su funcionamiento algo esencial para el empresario ganadero en busca del progreso y expansión del agro a la industria.
8. CONCLUSIONES

- El desarrollo de este proyecto permite concluir que el diseño de un sistema de alimentación bovina, para ser desmotado en ferias ganaderas es posible y a través del presente documento se muestra detalladamente como se cumple con el objetivo general de diseñar un producto adaptable que cumpla con los requerimientos planteados en el mismo y permita el beneficio del animal y de la agropecuaria.

- Al mismo tiempo se concluye que es un proyecto secuencialmente bien desarrollado, el cual permitió cumplir con los objetivos específicos que se plantea este documento realizando un elemento que facilita el suministro de alimento determinado por piezas modulares adaptables que hacen que el uso del producto sea mucho más cómodo para el operario, beneficioso para el bovino y asequible para la agropecuaria

- Cabe recalcar que, bajo la aplicación metodológica realizada a través del diseño centrado en el usuario, se llegó a la respuesta objetual pertinente que considera los diferentes tipos de usuario que interactúan con este elemento, dejando claro que solo a través de la investigación exhaustiva del análisis etnográfico y el entendimiento del proceso del operario bajo diferentes situaciones de sus labores diarias, se llega a la respuesta adecuada que suple las necesidades planteadas desde el inicio de este proyecto.

- La aplicación de este proyecto no solo es una importancia de mejora para la agropecuaria la Esperanza, sino que se convierte en una oportunidad para la región y el país en aplicar al sector agroindustrial este producto que beneficia a todas las partes implicadas en el proceso, disminuyendo sobrecostos en el alimento del animal, beneficiando al mismo con una buena alimentación,
otorgándole una mejora considerable en el aprovechamiento del bovino ya que al alimentarse de manera adecuada sus producciones serán de mejor calidad y en periodos más frecuentes.

- En el proceso de validación del proyecto a través de modelos aproximados al prototipo real, se evidencia en su rutina diaria una mejora considerable en la disminución de sobre esfuerzo en el trabajador, permitiendo al operario centrarse en diferentes actividades con mayor desempeño, al igual el tiempo que invertía en atender cada dos horas al animal en su proceso de alimentación se eliminó haciéndolo más productivo para la agropecuaria.

- De igual manera, al producto ser pensado para fácil transporte aplicado en ferias ganaderas, se concluye que a través del uso de este producto no solo se obtendrá una disminución del tiempo de montaje, sino que garantiza a la agropecuaria que este proceso de transporte el animal no disminuirá su peso, siendo fundamental para el desempeño y el éxito de la feria a la que asistan, otorgándole seguridad en el momento de participar de este tipo de eventos.

- A través de la comparación en su viabilidad comercial se pudo determinar y concluir que el producto que plantea este proyecto ofrece unos beneficios que sobrepasan las características del sistema más usado en la actualidad y que el costo beneficio en aspectos de ahorro, de aprovechamiento y aplicación, superan al usado actualmente, convirtiéndose en una inversión para la empresa, ya que al día el aprovechamiento de los insumos en la manutención alimentaria del bovino será del 100%.
ANEXOS 1

FORMATO DE ENCUESTA

<table>
<thead>
<tr>
<th>1. ¿Con cuantas canecas cuenta la empresa?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 10</td>
</tr>
<tr>
<td>b) 30</td>
</tr>
<tr>
<td>c) Más de 30</td>
</tr>
<tr>
<td>d) No sabe, no responde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. ¿Considera usted que se puede reducir el tiempo de carga del camión?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) si</td>
</tr>
<tr>
<td>b) no</td>
</tr>
<tr>
<td>c) tal vez</td>
</tr>
<tr>
<td>d) No sabe, no responde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. ¿Cuántas veces aproximadamente se monta y desmonta, buscando un apilamiento ideal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) constantemente</td>
</tr>
<tr>
<td>b) de 1 a 2 veces</td>
</tr>
<tr>
<td>c) Más de 2 veces</td>
</tr>
<tr>
<td>d) no sabe no responde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. ¿Cuál es el objeto que presenta dificultad de apilamiento?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Caneca de alimento</td>
</tr>
<tr>
<td>b) Comedero</td>
</tr>
<tr>
<td>c) bultos</td>
</tr>
<tr>
<td>d) No sabe, no responde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. ¿Quién realiza la actividad de montaje?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) El encargado de la empresa</td>
</tr>
<tr>
<td>b) El veterinario</td>
</tr>
<tr>
<td>c) La persona encargada</td>
</tr>
<tr>
<td>d) No sabe, no responde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. ¿La reutilización de la caneca como comedero es relacionada con qué?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Costo</td>
</tr>
<tr>
<td>b) El lugar</td>
</tr>
<tr>
<td>c) El comercio</td>
</tr>
<tr>
<td>d) Ideación de la empresa</td>
</tr>
<tr>
<td>e) No sabe, no responde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. ¿La cantidad de elementos trasladados a feria es determinado por?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Las necesidades de la feria</td>
</tr>
<tr>
<td>b) El encargado de la empresa</td>
</tr>
<tr>
<td>c) Las vacas transportadas</td>
</tr>
<tr>
<td>d) El dueño de la empresa</td>
</tr>
<tr>
<td>e) No sabe, no responde</td>
</tr>
</tbody>
</table>

Objetivo de la Encuesta: Identificar las falencias producidas, en cuanto al transporte de los elementos necesarios en feria.
10. ANEXO 2

FORMATO DE LA ENTREVISTA

1. ¿Con que frecuencia se carga el camión?
2. ¿Cómo es la secuencia de montaje y desmontaje de los elementos en finca y feria?
3. ¿Cuáles son los elementos de supervivencia en el lugar o los transportados en feria?
4. ¿Quién dispone del tiempo a partir de usted para hacer la labor?
5. ¿Cuál es el tiempo aproximado que se gastan montando todo?
6. ¿Qué perjuicios conlleva la actividad física a su estado de salud?
7. ¿Quién decide la distribución del camión?
8. ¿Qué es lo que más importa en cuanto a la prioridad del camión?
9. ¿Cuáles son los factores que influyen de manera negativa al momento de planear la distribución?
10. ¿Qué solución han implementado en la empresa para solucionar la carga de los elementos a feria?
11 REFERENCIAS BIBLIOGRÁFICAS

Huertas, S. (S.A). Transporte de animales: el camino transitado y el que falta por recorrer. Uruguay.

Muriel, D., & Mor Pera, E. (2001). Diseño Centrado en el Usuario. UOC.

Sánchez, M. (30 de 09 de 2010). Establos. Obtenido de https://es.slideshare.net/nicolas00/establos

