DISEÑO DE UN SOFTWARE PARA EL ACCIONAMIENTO DE LA
PROTOTIPADORA RAPIDA EXPERIMENTAL

LUIS MIGUEL OSORIO CASTAÑO
JOSE DAVID ARBELAEZ RAMIREZ

UNIVERSIDAD CATÓLICA DE PEREIRA
FACULTAD DE CIENCIAS BÁSICAS
INGENIERIA DE SISTEMAS Y TELECOMUNICACIONES
PEREIRA
2013
DISEÑO DE UN SOFTWARE PARA EL ACCIONAMIENTO DE LA PROTOTIPADORA RAPIDA EXPERIMENTAL.

LUIS MIGUEL OSORIO CASTAÑO
JOSE DAVID ARBELAEZ RAMIREZ

Proyecto de grado

Director
Andrés Vargas
Ingeniero de Sistemas

UNIVERSIDAD CATÓLICA DE PEREIRA
FACULTAD DE CIENCIAS BÁSICAS
INGENIERÍA DE SISTEMAS Y TELECOMUNICACIONES
PEREIRA
2013
AGRADECIMIENTOS

Extendemos nuestro sentido de gratitud a las directivas y profesorado de la Universidad y a nuestra familia por habernos apoyado y dado la oportunidad de estudiar y profundizar en la carrera de Ingeniería de Sistemas y Telecomunicaciones, igualmente a los compañeros y todas las demás personas que nos brindaron su acompañamiento y buenos consejos durante los años de nuestros estudios.

En especial a Dios, que es el guía todos nuestros pasos y nos brindó sabiduría, fortaleza para alcanzar nuestra meta.
1. RESUMEN

Este proyecto tiene como objetivo diseñar y construir un software que permita el accionamiento de una prototipadora rápida experimental para darle continuidad a un proyecto de la facultad de diseño industrial de la Universidad Católica de Pereira el cual necesitaba ser automatizado.

Descriptores: prototipado, software, impresión 3D, modelos, CAD.

1.1. ABSTRACT

This project aims to design and build a software that allows rapid experimental drive prototipadora to give continuity to a project of industrial design faculty of the Catholic University of Pereira which needed to be automated.

Descriptors: prototyping, software, 3D models, CAD printing.
CONTENIDO

1. RESUMEN .. 4
 1.1. ABSTRACT .. 4
 1.2. LISTA DE FIGURAS ... 8
 1.3. LISTA DE TABLAS ... 9
 1.4. INTRODUCCIÒN ...10
2. FORMULACIÓN DEL PROYECTO ... 11
 3.1. PLANTEAMIENTO DEL PROBLEMA .. 11
3. JUSTIFICACIÓN .. 13
4. DEFINICIÒN DE LA LINEA DE INTERVENCIÓN .. 14
5. OBJETIVOS .. 15
 6.1. OBJETIVO GENERAL ... 15
 6.2. OBJETIVOS ESPECÍFICOS ... 15
6. MARCO TEORICO ... 16
 7.1. PROTOTIPADO .. 16
 7.2. PROTOTIPAJE RÁPIDO ... 16
 7.3. HILO ABS. ... 16
 7.4. SEÑALES ANALÓGICAS .. 17
 7.5. SEÑALES DIGITALES ... 17
 7.6. MICROCONTROLADOR ... 17
 7.7. MODELO 3D ... 18
 7.8. SOFTWARE DE DISEÑO 3D. ... 18
 7.9. ¿QUÉ ES LA AUTOMATIZACIÓN? .. 18
 7.10. OBJETIVOS DE LA AUTOMATIZACIÓN .. 19
 7.11. CONTROL POR COMPUTADOR. ... 19
 7.12. LENGUAJES DE PROGRAMACIÓN PARA AUTOMATIZACIÓN 20
7.13. SOFTWARE .. 20
7.14. VISUAL STUDIO .. 21
7.15. INTERFAZ GRÁFICA .. 21
7. MARCO CONCEPTUAL ... 22
8.1. SISTEMAS CAD .. 22
8.2. FORMATOS STL ... 22
8. MARCO METODOLÓGICO ... 23
 9.1.1. ANALISIS ... 23
9.2. PRINCIPIO DEL FUNCIONAMIENTO ... 24
9.3. FUNCIONAMIENTO DE LA MÁQUINA .. 24
9.4. FUNCIONAMIENTO DEL SOFTWARE (VISUAL STUDIO) .. 27
9. DESARROLLO DEL PROYECTO ... 28
10.1. INGENIERÍA DEL SOFTWARE ... 28
 10.1.1. MODELO CICLO DE VIDA DEL SOFTWARE ... 28
10.2. ANALISIS DE REQUERIMIENTOS .. 29
 10.2.1. LEVANTAMIENTO DE LOS REQUERIMIENTOS .. 29
10.3. REQUERIMIENTOS FUNCIONALES .. 29
 10.3.1. REQUERIMIENTOS NO FUNCIONALES .. 29
 10.3.2. PONDERACION DE REQUERIMIENTOS ... 36
10.4. DISEÑO .. 37
 10.4.1. DIAGRAMAS DE CASOS DE USO .. 37
 10.4.2. DIAGRAMAS DE CLASES ... 40
 10.4.3. DIAGRAMAS DE SECUENCIA ... 41
 10.4.4. INTERFAZ DE USUARIO .. 42
10.5. PLANOS ELECTRÓNICOS ... 43
10.1. PLAN DE PRUEBAS ... 44
10.2. TRABAJOS RELACIONADOS .. 46
10. CONCLUSIONES ... 47
11. RECOMENDACIONES ...48
12. BIBLIOGRAFÍA ...49
13. ANEXOS ..50
1.2. LISTA DE FIGURAS

<table>
<thead>
<tr>
<th>Gráfico</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motor PAP</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Estructura de la Prototipadora</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Extrusor</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Casos de uso</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>Diagrama de clases</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Secuencial cargar datos.</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Secuencial accionamiento motores</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Secuencial modelo pieza</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>Interfaz Usuario</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>Driver</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>Tarjeta electrónica</td>
<td>43</td>
</tr>
</tbody>
</table>
1.3. LISTA DE TABLAS.

Tabla 1. RQ1...30
Tabla 2. RQ2..31
Tabla 3. RQ3..32
Tabla 4. RQ4..33
Tabla 5. RQ5..34
Tabla 6. RQ6..35
Tabla 7 Ponderación de Requerimientos..36
Tabla 8. Carga de datos. ...37
Tabla 9. Selección de puerto ...38
Tabla 10. Envío de datos. ...38
Tabla 11. Detener ..39
Tabla 12. Continuar ...39
Tabla 13. Prueba de motores pasó a paso y extrusor ...44
Tabla 14. Prueba de envío de datos ..45
1.4. INTRODUCCIÒN.

El presente proyecto nace de la necesidad de construir un software que pueda controlar, accionar y elaborar una pieza de cara plana en la prototipadora rápida experimental, previamente diseñada en un programa de diseño 3D. Esta necesidad planteada por la Facultad de Diseño se avizoró desde hace unos años, ya que la prototipadora sólo funcionaba mediante un control de mando (touch) o modo análogo.

Ante la necesidad antes descrita se pretende diseñar un software, con su respectiva interfaz gráfica, que permita el accionamiento de la prototipadora rápida experimental, para alcanzar dicho objetivo es necesario, explorar el estado del arte de trabajos realizados en la automatización y control de prototipadoras; posteriormente analizar los conceptos más relevantes respecto al prototipado rápido experimental y por último investigar cuál es el mejor lenguaje de programación para implementar la solución.

La importancia de este proyecto es la automatización y posibilidad de interactuar el hombre con la máquina mediante un software, de tal manera que el diseñador o el usuario que desee cierto modelo, lo pueda tener físicamente y visualizarlo en 3D en un tiempo mucho menor.
2. FORMULACIÓN DEL PROYECTO.

3.1. PLANTEAMIENTO DEL PROBLEMA.

La investigación sobre prototipaje rápido experimental, empezó en el año 2008, y ha sido desarrollada hasta ahora por estudiantes y docentes del programa de Diseño Industrial de la UCP; el objetivo inicial del semillero de investigación fue implementar en la Universidad un laboratorio de prototipaje rápido, en el que no sólo se preste el servicio, sino que también se enseñe a usuarios y estudiantes el funcionamiento y beneficios de este tipo de tecnología.

Los estudiantes de Diseño Industrial, trabajan con base en procesos denominados métodos proyectoales que consisten básicamente en un listado de pasos que deben ser ejecutados para llevar a cabo el diseño de un proyecto o producto; para abordar este tema, se toma como referente la metodología proyectual planteada por el autor Bruno Munari\(^1\) y empleada generalmente por los estudiantes de diseño, esta, exige que el diseñador llegue no sólo a una respuesta renderizada, es decir, en papel o digital, sino también a un resultado físico o prototipo.

Es por esto que surge la necesidad de implementar en la Universidad Católica de Pereira el prototipaje rápido, pues ni los talleres de diseño industrial de la UCP, ni los talleres de las universidades en la región cuentan con herramientas tecnológicas que permitan la precisión en los detalles del elemento; de esta manera la construcción del prototipo se convierte en un proceso prácticamente artesanal, que además presenta dificultades en el momento de la comunicación con el usuario, para evitar esto se encuentra que los estudiantes deben recurrir a entidades externas que cuenten con las herramientas especializadas para la elaboración del prototipo; haciendo de este un proceso ineficiente o incluso limitando el proyecto al papel y dando espacio a que se generen en el cliente falsas expectativas con respecto al diseño o propuesta proyectual.

En este momento el Semillero de Investigación de Diseño se encuentra en la etapa final del ensamble mecánico de la prototipadora, y es aquí donde se hace indispensable generar redes o lazos interdisciplinarios con el programa de Ingeniería de Sistemas y Telecomunicaciones; que asumirían el desarrollo de la aplicación que conlleve al funcionamiento de la máquina.

El desarrollo físico y la implementación funcional de la prototipadora, permitirá que los procesos proyectuales de los estudiantes de diseño, arquitectura y demás carreras afines, sean desarrollados en su totalidad y la construcción de los prototipos a los que estos conllevan, sea un proceso automatizado: así se le permitirá al usuario disminuir el tiempo empleado en la construcción de la pieza, conociendo de antemano las especificaciones de forma, dimensión y configuración del proyecto.

Con la participación y el conocimiento mancomunado de los estudiantes de Diseño Industrial e Ingeniería de Sistemas y Telecomunicaciones será posible la completa implementación de la máquina, la oferta y extensión del servicio en escenarios diferentes a la universidad.

La complejidad del problema, radica en controlar 3 motores paso a paso que accionan dos ejes horizontales y uno vertical, logrando así la precisión necesaria para presentar un prototipo físico fiel a las características mostradas al modelo.

¿Cómo permitir el accionamiento de la prototipadora rápida experimental por parte del usuario, partiendo de una pieza diseñada en software de diseño 3D?.
3. JUSTIFICACIÓN.

Al identificar la dificultad presente en el proceso proyectual de los estudiantes de Diseño Industrial UCP en el momento de presentar sus prototipos, el semillero de Investigación en Tecnología y Diseño, ahora con el aporte de los estudiantes de Ingeniería de Sistemas y Telecomunicaciones se propuso el diseño, construcción e implementación de una máquina de prototipado rápido experimental.

El desarrollo de este proyecto de investigación es importante tanto para el programa de Diseño Industrial, como para el programa de Ingeniería de Sistemas y Telecomunicaciones, pues la máquina garantizará que el proceso proyectual sea desarrollado total y exitosamente. Es necesaria la presencia de los ingenieros de sistemas y telecomunicaciones para lograr el último acople entre los componentes mecánicos y la aplicación digital del usuario.

Teniendo en cuenta que el trabajo interdisciplinar conlleva a la obtención de mejores resultados, es que cada área aporta sus fortalezas, logrando con esto un alto nivel académico e intelectual, se considera que el equipo de trabajo debe contar con un ingeniero de sistemas y telecomunicación, pues es competencia de este el desarrollo de aplicaciones que permitan el óptimo funcionamiento de la máquina.

Es importante resaltar que este proyecto será desarrollado en su totalidad en instalaciones de la Universidad Católica de Pereira, siendo esta mecánica la única construida a nivel regional. El proyecto será pionero en la exploración y aplicación de este tipo de tecnología.
4. DEFINICIÓN DE LA LINEA DE INTERVENCIÓN.

Las acciones que se realizarán en pro del programa de diseño de industrial van orientadas al desarrollo de un software que permite el control de una maquina prototipadora, este software ofrece una interfaz gráfica que facilita su manipulación para realizar la impresión de objetos 3D.
5. OBJETIVOS.

6.1. OBJETIVO GENERAL.

Diseñar un software que permita el accionamiento de la prototipadora rápida experimental.

6.2. OBJETIVOS ESPECÍFICOS.

• Conocer cuáles son las últimas tendencias en impresión 3D.
• Conocer el funcionamiento de la prototipadora experimental de la universidad.
• Investigación de los diferentes lenguajes de programación para definir el más adecuado para el prototipo del software.
• Probar el accionamiento de los motores de la prototipadora rápida experimental a través de un prototipo de software.
• Verificar el funcionamiento del software con el diseño e implementación de un plan de pruebas.
6. MARCO TEORICO

7.1. PROTOTIPADO.

En los últimos tiempos ha surgido una nueva gama de máquinas altamente innovadoras que permite, con diferentes tecnologías, software en 3D y materiales, obtener prototipos a partir de un molde o un modelo de manera precisa y relativamente rápida. Estas máquinas conocidas como máquinas de prototipado rápido, posibilitan obtener piezas físicas, acabadas de modo automático, con forma y dimensiones reales, con un alto grado de dificultad y cantidad de detalles que son imposibles de realizar manualmente o en máquinas de baja tecnología. Las técnicas de prototipado rápido tienen como objetivo principal obtener de manera rápida y exacta una copia tridimensional de los diseños generados mediante aplicación en 3D. Este tipo de máquinas proporciona al usuario (en este caso al diseñador), una mayor comodidad y facilidad en la obtención o realización de prototipos comparados con los que se llavan a cabo tradicionalmente.

Los datos para las máquinas de prototipado rápido son generados por los sistemas CAD en formato STL, que aproxima el modelo sólido a través de pequeños triángulos o facetas. Una vez el archivo STL es generado, las demás operaciones son ejecutadas por el propio software que realizará operaciones principales de visualización y generación de secciones transversales del modelo que será construido; esta información es transmitida a la máquina mediante una tarjeta, la cual irá depositando capas del material hasta que la pieza sea generada.

7.2. PROTOTIPAJE RÁPIDO.

El prototipaje rápido es un conjunto de técnicas utilizadas para fabricar y diseñar rápidamente un modelo a escala, se utiliza para la fabricación de piezas de calidad en cantidades relativamente pequeñas, si se desea, usando tres dimensiones de diseño asistido por el computador.

7.3. HILO ABS.

Es un polímero de plástico el cual es muy utilizado en las impresoras o prototipadoras rápidas. El ABS se usa extensivamente en los procesos de

1. Retomado de la página de la UCP, el día 20 de Noviembre de 2012 a las 5:00 p.m.

2. Retomado de la página impresoras 3D el día 10 de Noviembre del 2013
fabricación actuales, piezas de Lego, carcasas de electrodomésticos, componentes de automóvil; al tener un punto de fusión alto, se puede utilizar para fabricar contenedores de líquidos calientes, hay que extruírla a unos 230-260 grados y debe imprimirse en impresoras o prototipadoras rápidas con base caliente (unas resistencias que calientan la base donde se deposita el material)

7.4. SEÑALES ANALÓGICAS.

Según Miyara3, la señal analógica es aquella que presenta una variación continua con el tiempo, es decir, que a una variación suficientemente significativa del tiempo le corresponderá una variación igualmente significativa del valor de la señal (la señal es continua). Toda señal variable en el tiempo, por complicada que ésta sea, se representa en el ámbito de sus valores (espectro) de frecuencia. De este modo, cualquier señal es susceptible de ser representada descompuesta en su frecuencia fundamental y sus armónicos. El proceso matemático que permite esta descomposición se denomina análisis de Fourier.

7.5. SEÑALES DIGITALES

Según Miyara4, es un tipo de señal generada por algún tipo de fenómeno electromagnético, en el cual cada signo codifica el contenido de la misma y puede ser analizado en término de algunas magnitudes que representan valores discretos, en lugar de valores dentro de un cierto rango.

7.6. MICROCONTROLADOR.

Un microcontrolador es un circuito integrado que nos brinda las mismas cualidades de un pequeño computador. En su interior encontramos un procesador, memoria, y varios periféricos.

Un microcontrolador5 es un circuito integrado de alta escala de integración que incorpora la mayor parte de los elementos que configuran un controlador, dispone

http://www.impresoras3d.com/abs-y-pla-diferencias-ventajas-y-desventajas

4 Ibídem.

5 Retomado de la página Galeón el día 30 de Octubre de 2013 a las 1:00 pm.

http://axnm.galeon.com/
normalmente de los siguientes componentes: Procesador o UCP (Unidad Central de Proceso). Memoria RAM para Contener los datos. Memoria para el programa tipo ROM/PROM/EPROM. Líneas de E/S para comunicarse con el exterior. Diversos módulos para el control de periféricos (temporizadores, Puertas Serie y Paralelo, CAD: Conversores Analógico/Digital, CDA: Conversores Digital/Analógico, etc.).

7.7. MODELO 3D.

En el lenguaje de los gráficos en 3D, un modelo es un archivo que contiene la información necesaria para ver o “renderizar” un objeto en 3 dimensiones. Este archivo contiene dos tipos de información: 1. La geometría -forma- del objeto 2. Los atributos de la superficie del objeto, o sea, la información que permite que el objeto esté correctamente coloreado de modo que aparente estar hecho de un determinado material (ej. vidrio, plástico, madera etc.)

7.8. SOFTWARE DE DISEÑO 3D.

Solidworks es un programa de diseño asistido por computadora, este programa permite modelar piezas y conjuntos y extraer de ellos tanto planos técnicos como otro tipo de información necesaria para la producción. Es un programa que funciona con base en las nuevas técnicas de modelado con sistemas CAD. El proceso consiste en trasvasar la idea mental del diseñador al sistema CAD, "construyendo virtualmente" la pieza o conjunto. Posteriormente todas las extracciones (planos y ficheros de intercambio) se realizan de manera bastante automatizada.

7.9. ¿QUÉ ES LA AUTOMATIZACIÓN?

La automatización es un sistema de fabricación, diseñado con el fin de usar la capacidad de las máquinas para llevar a cabo tareas efectuadas por seres humanos, con el fin de utilizar sistemas o elementos computarizados y

6 Retomado de la página Mitreum, el día 22 de Noviembre de 2012 a las 5:00 pm
7 Retomado de la página Wikipedia el día 2 de noviembre de 2013 a las 3:00 pm
http://es.wikipedia.org/wiki/SolidWorks
electromecánicos para controlar maquinarias y/o procesos industriales sustituyendo a operadores humanos.
La automatización como una disciplina de la ingeniería es más amplia que un simple sistema de control, abarca la instrumentación industrial, que incluye los sensores, los transmisores de campo, los sistemas de control y supervisión, los sistemas de transmisión y recolección de datos y las aplicaciones de software en tiempo real para supervisar, controlar las operaciones de plantas o procesos industriales.

7.10. **OBJETIVOS DE LA AUTOMATIZACIÓN**

- Mejorar la productividad de la empresa, reduciendo los costos de la producción y mejorando la calidad de la misma.
- Mejorar las condiciones de trabajo del personal, suprimiendo los trabajos engorrosos e incrementando la seguridad.
- Realizar las operaciones imposibles de controlar intelectual o manualmente.
- Mejorar la disponibilidad de los productos, pudiendo proveer las cantidades necesarias en el momento preciso.
- Simplificar el mantenimiento de forma que el operario no requiera grandes conocimientos para la manipulación del proceso productivo.
- Integrar la gestión y producción.

7.11. **CONTROL POR COMPUTADOR**.

Los sistemas de control por computador permiten aprovechar un computador para controlar un sistema físico real. En nuestro entorno encontramos multitud de sistemas que son o pueden ser controlados por computador. Dentro de estos sistemas podemos encontrar, computador (a bordo de un automóvil, una casa domotizada, sistema de aire acondicionado, los complejos sistemas de control de los autos de fórmula 1, naves espaciales, etc).

8 Retomado de la página Gipuzkoa, el día 30 de noviembre, a las 4:00 pm, http://www.sc.ehu.es/sbweb/webcentro/automatica/WebCQMHI1/PAGINA%20PRINCIPAL/Automatizacion/Automatizacion.htm
7.12. **LENGUAJES DE PROGRAMACIÓN PARA AUTOMATIZACIÓN.**

Es una actividad realizada mediante la programación de software, es decir que un framework de automatización es un desarrollo en sí que se utiliza para realizar pruebas sobre otro desarrollo (aplicación objeto de prueba). Si hablamos de desarrollo, automáticamente estamos haciendo referencia a un lenguaje de programación. Actualmente existen muchos lenguajes de programación para el desarrollo de aplicaciones, aunque el avance de automatización de pruebas no tiene la misma suerte, ya que son muchos menos los lenguajes dedicados a la automatización.

Aclarando que se refiere a pruebas de tipo funcionales y de aplicaciones web y se dice esto con base a la cantidad de documentación y dedicación por parte de cada comunidad de cada lenguaje.

Si tenemos que mencionar los primeros seis lenguajes más utilizados para la automatización de pruebas podríamos decir que son: Java, Ruby, Python, .NET, PHP, C#.

7.13. **SOFTWARE.**

El software es un conjunto de componentes lógicos de un sistema, que en contraposición a los componentes físicos, posibilita la realización de tareas específicas.

Software de sistema"). “Su objetivo es desvincular adecuadamente al usuario y al programador de los detalles del sistema informático en que se use en particular, aislándolo especialmente del procesamiento referido a las características internas de: memoria, discos, puertos y dispositivos de comunicaciones, impresoras, pantallas, teclados, etc. El software de sistema le procura al usuario y programador, las adecuadas interfaces de alto nivel, controladores, herramientas y utilidades de apoyo que permiten el mantenimiento del sistema global, incluye entre otros:

- Sistemas operativos
- Controladores de dispositivos

9 Retomado de la página Wikipedia, el día 30 de noviembre, a las 5:00 pm
Herramientas de diagnóstico
Herramientas de Corrección y Optimización
Servidores
Utilidades.

7.14. VISUAL STUDIO.

Visual Studio es un conjunto completo de herramientas de desarrollo para la generación de aplicaciones web ASP.NET, Servicios Web XML, aplicaciones de escritorio y aplicaciones móviles. Visual Basic, Visual C# y Visual C++ utilizan todos el mismo entorno de desarrollo integrado (IDE), que habilita el uso compartido de herramientas y hace más sencilla la creación de soluciones en varios lenguajes. Asimismo, dichos lenguajes utilizan las funciones de .NET Framework, las cuales ofrecen acceso a tecnologías clave para simplificar el desarrollo de aplicaciones web ASP y Servicios Web XML.

7.15. INTERFAZ GRÁFICA.

Es cualquier medio mediante el cual interactuamos con la computadora, a través de algún tipo de software o programa gráfico, podemos manejarle mediante el mouse o teclado, menús, botones, casilla de verificación, áreas de texto, ventanas, las interfaces gráficas pueden tomar variedad de formas.

10 Retomado de Microsoft, el día 12 de octubre, a las 2:00 pm
7. MARCO CONCEPTUAL

8.1. SISTEMAS CAD.

“CAD11 significa Diseño Asistido por Computador (del inglés \textit{Computer Aided Design}), tal como lo indica el nombre, CAD es todo sistema informático destinado a asistir al diseñador en su tarea específica. El CAD atiende prioritariamente aquellas tareas exclusivas del diseño, tales como el dibujo técnico y la documentación del mismo, pero normalmente permite realizar otras tareas complementarias relacionadas principalmente con la presentación y el análisis del diseño realizado”.

8.2. FORMATOS STL.

Para poder imprimir un modelo en una prototipadora es necesario generar antes el formato STL correspondiente. STL es un formato de fichero que aceptan prácticamente todos los programas de control de impresoras 3D.

Para fabricar un prototipo rápido es necesario contar con un diseño CAD 3D, pero además hay que exportarlo a formato STL. Que es la forma más simple de almacenar la información de un sólido o unas superficies. Convierte toda la información que contiene a triángulos o facetas. Por ejemplo una superficie plana y rectangular se definiría con dos triángulos, pero una superficie curva, necesitará un gran número de triángulos. Este formato de fichero es el que leen prácticamente la totalidad de sistemas de impresión 3D, mediante su propio software de proceso y posicionamiento de las piezas. Es decir, traducimos nuestro diseño 3D a formato STL, el software de la impresora 3D lo lee y prepara la posición de construcción de la pieza, filetea en capas el volumen, prepara los soportes y envía a máquina la información.

11 Biblioteca.ucp.edu.co/ojs/index.php/grafulas/article/download/\ldots/272
8. MARCO METODOLÓGICO

9.1.1. ANALISIS

En primera instancia, realizamos el proceso analítico sobre los antecedentes de las máquinas de prototipaje rápido experimental que han sido puestas en funcionamiento en la región cafetera en los últimos cinco años; este será el primer paso para dar inicio a nuestras averiguaciones y estudios correspondientes.

Con apoyo de distintas fuentes, tales como proyectos relacionados con la materia ya culminados, se realizará un estudio para establecer la viabilidad del proyecto.

Seguidamente, se analizaron los elementos constitutivos de la máquina, en especial los motores paso a paso, observando el funcionamiento de su marcha la cual es impulsada de manera eléctrica, encontramos que la máquina estaba en desuso desde hace un año, desajustada, el eje x no existía, piezas de la estructura de la máquina desgastadas u obsoletas, las correas dentadas no son las apropiadas; la respectiva solución fue construir y adaptar el eje x, se consiguió asesoría por parte del Sena para el mantenimiento de tarjetas electrónicas, ajuste de estructura de la máquina, compra de nuevas piezas.

Todo esto con el fin de probar el funcionamiento de la prototipadora, este se realizaba mediante un control de mando o touch panel, se corría el riesgo de que la tarjetas electrónicas se quemaran sino se generaba previamente un ajuste y mantenimiento total de la máquina, ya observando el funcionamiento de la máquina se dio lugar al análisis y levantamiento de requerimientos, se manejó la técnica por observación directa.

Se indago sobre los diferentes desarrollos de software existentes, que realizan con similitud el accionamiento de una prototipadora rápida experimental, de esta manera se tendrá una guía para desarrollar este proyecto.
9.2. PRINCIPIO DEL FUNCIONAMIENTO.

Al igual que sus “parientes”, los motores de corriente continua, un motor pasó a paso está constituido por dos partes: una fija, llamada estator; y una móvil, llamada rotor.

El estator está construido en base de una serie de cavidades en las que se ubican las bobinas. Cuando una corriente eléctrica atraviesa una de estas bobinas, se forman los polos norte-sur necesarios para impulsar el motor.

El rotor puede basarse en un imán permanente o un inducido ferromagnético, siempre con el mismo número de pares de polos que el contenido en una sección de la bobina del estator. Todo esto se monta sobre un eje que a su vez se apoya en dos cojinetes que le permiten girar libremente.

Si somos capaces de lograr que las bobinas mencionadas se energicen en el orden y con la frecuencia adecuada, podremos hacer que el motor avance un paso en uno u otro sentido. Para ello, se necesita de un sistema de control adecuado. Y ahí es donde nuevamente podemos hacer uso de un microcontrolador. Con el programa adecuado podemos conseguir que el estator, creando los polos N-S. Al variar dicha excitación, de modo que el campo magnético formado efectúe un movimiento giratorio, el motor seguirá el movimiento de dicho campo, produciéndose de este modo el giro del rotor.

Otra característica no menos importante es que estos motores poseen la habilidad de quedar “enclavados” en una posición determinada. Efectivamente, si una o más de sus bobinas están alimentadas, el motor estará enclavado en la posición correspondiente. Si, por el contrario, no circula corriente por ninguna de sus bobinas, el rotor queda totalmente libre”

9.3. FUNCIONAMIENTO DE LA MÁQUINA.

A groso modo, el desarrollo físico y la implementación funcional de la máquina, se basa en mover y controlar tres motores pasó a paso que reciben señales digitales. Así las cosas, un primer motor genera movimientos en el eje X, el segundo genera movimientos en el eje Y, y un tercer motor genera movimiento en el eje Z. Este último cumple con la función de descender una décima de milímetro consiguiendo el volumen establecido desde los programas de diseño 3D, entre tanto, los motores restantes (o sea el eje X y Y) siguen una ruta horizontal. El programa se encarga de tomar las coordenadas para darle precisión a los motores, y de esta
forma poder realizar el accionamiento de los motores de la prototipadora rápida experimental, logrando así la precisión necesaria para presentar un prototipo físico fiel a las características mostradas en el modelo.

Un motor paso a paso (PAP)12, es un dispositivo electromecánico capaz de convertir una serie de impulsos eléctricos en desplazamientos angulares discretos. Esto significa que, a diferencia de un motor convencional (que gira de forma continua), es capaz de avanzar una serie de grados (o pasos) a la vez, dependiendo del estado de sus entradas de control. Un motor paso a paso se comporta de la misma manera que un convertidor digital-analógico y puede ser gobernado por impulsos procedentes de sistemas lógicos, tales como microcontroladores u ordenadores.

Gráfico 1. Motor PAP (Fuente: Autores)

12 PALAZZESI, A. Motores Paso a Paso. En: NeoteoABC, P.1
Los datos para las máquinas de prototipado rápido son generados por los sistemas CAD en formato STL o CNC, que aproxima el modelo sólido a través de pequeños triángulos o facetas. Una vez el archivo STL o CNC es generado, las demás operaciones son ejecutadas por el propio software; este realizara operaciones principales de visualización y generación de secciones planas o transversales del modelo que será construido; dichos serán transmitidos a la máquina mediante un microcontrolador, transmitiendo los datos por medio USB e interpretados por un software.

Ahora bien, cada uno de los motores principales paso a paso se encuentra controlado por tarjetas electrónicas con las que consiguen recibir las coordenadas necesarias para llevar a cabo el movimiento. Del mismo modo, las tarjetas electrónicas son controladas por una tarjeta madre, Cabe advertir, que la tarjeta madre genera su actividad por medio de un software que nos ayuda a interpretar los datos y generar el accionamiento de la máquina entre ambos se presenta una interconexión a través de cables USB y mini USB.

Por otro lado, en la parte superior de la máquina se encuentra otro motor independiente llamado extrusor, el cual cumple funciones de activación desde el software, donde se logra poner en funcionamiento las resistencias que generan calor y de esta manera funden el material de hilo ABS.
Finalmente, este último motor cuenta con un ventilador en la parte superior que enfriá el material en el instante en que el mismo cae en la superficie y de esta manera materializar el objeto, es decir, darle forma física al modelo, y obtener la pieza final en 3D y poder visualizarla.

9.4. FUNCIONAMIENTO DEL SOFTWARE (VISUAL STUDIO).

El software lo decidimos realizar en visual basic, puesto que ya al haber hecho dichas investigaciones sobre los lenguajes de programación es más útil para las máquinas de impresión en 3D. Eventualmente esta herramienta de programación nos ayudó a realizar el software de forma más cómoda para el desarrollador; posteriormente efectuamos nuestro software con una interfaz gráfica de esta manera generar dicha solución al planteamiento del problema.

Diseñamos una interfaz gráfica la cual es agradable y cómoda para el usuario, ayudando a generar acciones como cargar datos en formatos CNC, interpretarlos, generar el accionamiento de los motores de la máquina y poder suspender la máquina en el momento que deseemos o sea necesario. Con el fin de generar una mayor reacción a cualquier situación que se presente sea diseñar un modelo o exista una interrupción o un daño inesperado.
Este software realizado es enfocado principalmente para que el hombre pueda interactuar con máquinas. En este caso es el usuario que tiene la necesidad de poder interactuar con la maquina prototipadora rápida experimental y así de manera más fácil y ágil poder tener un accionamiento o el modelo esperado.

9. DESARROLLO DEL PROYECTO.

10.1. INGENIERÍA DEL SOFTWARE.

10.1.1. MODELO CICLO DE VIDA DEL SOFTWARE.

Analizando las necesidades de la máquina de prototipado se ha decidido utilizar un modelo de prototipado como MCSV (Modelo de Ciclo de Vida del Software). se implementó este modelo de ciclo de vida del software, porque permite realizar entregas parciales o avances de la interfaz gráfica del software, así mismo poder solucionar inconvenientes que se presenten en el transcurso del desarrollo del proyecto, para que en el momento de realizar el accionamiento poder tener el modelo o la pieza esperada.

Una de las ventajas que ofrece este modelo es la visibilidad del diseño de la interfaz desde el inicio de ciclo de vida, esto le puede ayudar al usuario a definir mejor sus requerimientos y ver las necesidades resultantes. El desarrollador puede caer en la tentación de ampliar el diseño de la interfaz para construir el software final sin tener en cuenta los compromisos de calidad o requerimientos por el cliente.

El paradigma de diseño de construcción del software comienza en recaudación de los requerimientos. El desarrollador y el cliente encuentran y definen los objetivos principales para el software. Entonces se procede a tener un diseño de la interfaz rápida que se centra en la representación de esos aspectos del software que serán visibles para el usuario/cliente. El diseño del software lo valora el usuario y se utiliza para redefinir los requerimientos; la interacción ocurre cuando el software se pone a punto para satisfacer las necesidades del cliente.
10.2. ANALISIS DE REQUERIMIENTOS

Los requerimientos del software fueron pre vistos por análisis personal, cuando se le dio inicio el ensamblaje de la maquina prototipadora rápida experimental en la facultad de diseño industrial de la universidad; después de estar la maquina en funcionamiento y accionada por un control de mando o touch panel, nosotros los estudiantes de ingeniería de sistemas y telecomunicaciones, investigamos sobre la máquina y cuál era su funcionalidad, y saber si de ella se puede obtener un accionamiento óptimo de los motores de la prototipadora desde un software.

10.2.1. LEVANTAMIENTO DE LOS REQUERIMIENTOS.

Surgió la idea de poder realizar un software que le permitiera al usuario poder interactuar con la maquina prototipadora rápida por medio de un software el cual permite accionar los motores, cumplir con las mismas funciones del control de mando y poder ser automatizada la máquina.

10.3. REQUERIMIENTOS FUNCIONALES

- El software debe permitir el accionamiento de la prototipadora.
- El software debe permitir cargar, interpretar y enviar datos de tipo CNC.
- El software debe permitir detener la prototipadora y reanudar el proceso en el que se detuvo.
- El software debe ser realizado en Visual Studio 6.0 usando lenguaje de programación Visual Basic porque es requisito para usar los microcontroladores.

10.3.1. REQUERIMIENTOS NO FUNCIONALES

- El software debe tener iconos para cada funcionalidad para facilitar el uso por parte de los usuarios
- Para reconocimiento de los puertos usar programa X-CTU.
<table>
<thead>
<tr>
<th>LOGO</th>
<th>PROYECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diseño de un Software para el accionamiento de la prototipadora rápida experimental</td>
</tr>
</tbody>
</table>

Nombre del proyecto: Diseño de un Software para el accionamiento de la prototipadora rápida experimental
Fecha: 10/08/2013

Dependencia: Facultad de Diseño Industrial
Usuario: Estudiante

Cargo del usuario: Diseñador Industrial
Requerimiento Nro. 001

Descripción del requerimiento:
El software debe permitir el accionamiento de la prototipadora.

<table>
<thead>
<tr>
<th>Tipo de requerimiento</th>
<th>X</th>
<th>Funcional</th>
<th>No funcional</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Analista Responsable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luis Miguel Osorio Castaño</td>
</tr>
<tr>
<td>José David Arbeláez Ramírez</td>
</tr>
<tr>
<td>LOGO</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre del proyecto:</th>
<th>Fecha: 10/08/2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño de un Software para el accionamiento de la prototipadora rápida experimental</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependencia:</th>
<th>Usuario:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facultad de Diseño Industrial</td>
<td>Estudiante</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cargo del usuario:</th>
<th>Analista Responsable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseñador Industrial</td>
<td>Luis Miguel Osorio Castaño</td>
</tr>
<tr>
<td></td>
<td>José David Arbeláez Ramírez</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requerimiento Nro.</th>
<th>002</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Descripción del requerimiento:</th>
</tr>
</thead>
<tbody>
<tr>
<td>El software debe permitir cargar, interpretar y enviar datos de tipo CNC.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de requerimiento</th>
<th>X</th>
<th>Funcional</th>
<th>No funcional</th>
</tr>
</thead>
</table>

Tabla 2. RQ2
Tabla 3. RQ3

<table>
<thead>
<tr>
<th>LOGO</th>
<th>PROYECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diseño de un Software para el accionamiento de la prototipadora rápida experimental</td>
</tr>
</tbody>
</table>

Nombre del proyecto:
Diseño de un Software para el accionamiento de la prototipadora rápida experimental
Fecha: 10/08/2013

Dependencia: Facultad de Diseño Industrial
Usuario: Estudiante

Cargo del usuario: Diseñador Industrial

Analista Responsable:
Luis Miguel Osorio Castaño
José David Arbeláez Ramírez
Requerimiento Nro.: 003

Descripción del requerimiento:
El software debe permitir detener la prototipadora y reanudar el proceso en el que se detuvo.

<table>
<thead>
<tr>
<th>Tipo de requerimiento</th>
<th>Funcional</th>
<th>No funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 4. RQ4

<table>
<thead>
<tr>
<th>LOGO</th>
<th>PROYECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diseño de un Software para el accionamiento de la prototipadora rápida experimental</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre del proyecto:</th>
<th>Fecha: 10/08/2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño de un Software para el accionamiento de la prototipadora rápida experimental</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependencia:</th>
<th>Usuario:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facultad de Diseño Industrial</td>
<td>Estudiante</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cargo del usuario:</th>
<th>Analista Responsable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseñador Industrial</td>
<td>Luis Miguel Osorio Castaño</td>
</tr>
<tr>
<td></td>
<td>José David Arbeláez Ramírez</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requerimiento Nro.</th>
<th>004</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Descripción del requerimiento:</th>
</tr>
</thead>
<tbody>
<tr>
<td>El software debe ser realizado en Visual Studio 6.0 usando lenguaje de programación Visual Basic porque es requisito para usar los microcontroladores.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de requerimiento</th>
<th>X</th>
<th>Funcional</th>
<th>No funcional</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nombre del proyecto:</th>
<th>Fecha: 10/08/2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño de un Software para el accionamiento de la prototipadora rápida experimental</td>
<td></td>
</tr>
<tr>
<td>Dependencia:</td>
<td>Usuario:</td>
</tr>
<tr>
<td>Facultad de Diseño Industrial</td>
<td>Estudiante</td>
</tr>
<tr>
<td>Cargo del usuario:</td>
<td>Requerimiento Nro.</td>
</tr>
<tr>
<td>Diseñador Industrial</td>
<td>005</td>
</tr>
</tbody>
</table>

Descripción del requerimiento:
El software debe tener iconos para cada funcionalidad para facilitar el uso por parte de los usuarios

<table>
<thead>
<tr>
<th>Tipo de requerimiento</th>
<th>Funcional</th>
<th>No funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOGO</td>
<td>PROYECTO</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diseño de un Software para el accionamiento de la prototipadora rápida experimental</td>
<td></td>
</tr>
</tbody>
</table>

Nombre del proyecto: Diseño de un Software para el accionamiento de la prototipadora rápida experimental
Fecha: 10/08/2013

** Dependencia:** Facultad de Diseño Industrial
** Usuario:** Estudiante

Cargo del usuario: Diseñador Industrial

Analista Responsable:
- Luis Miguel Osorio Castaño
- José David Arbeláez Ramírez

Requerimiento Nro.: 006

Descripción del requerimiento:
Para reconocimiento de los puertos usar programa X-CTU.

<table>
<thead>
<tr>
<th>Tipo de requerimiento</th>
<th>Funcional</th>
<th>X</th>
<th>No funcional</th>
</tr>
</thead>
</table>

Tabla 6. RQ6
10.3.2. PONDERAÇÃON DE REQUERIMIENTOS

Tabla 7 Ponderación de Requerimientos

<table>
<thead>
<tr>
<th>Requerimiento</th>
<th>Ponderación (porcentaje)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La interfaz gráfica debe de ser agradable y cómoda para el usuario</td>
<td>5%</td>
</tr>
<tr>
<td>El software debe ser de fácil mando para el usuario</td>
<td>5%</td>
</tr>
<tr>
<td>El software debe permitir el accionamiento de la prototipadora</td>
<td>20%</td>
</tr>
<tr>
<td>El software debe permitir cargar, interpretar y enviar datos de tipo CNC</td>
<td>20%</td>
</tr>
<tr>
<td>El software debe ser realizado en Visual Studio 6.0 usando lenguaje de programación Visual Basic</td>
<td>20%</td>
</tr>
<tr>
<td>Para reconocimiento de los puertos se recomienda el programa X-CTU</td>
<td>5%</td>
</tr>
<tr>
<td>Se recomienda que la figura sea desarrollada en SolidWorks</td>
<td>10%</td>
</tr>
<tr>
<td>Se necesita un computador con un procesador de un 1Ghz o superior, memoria ram de 1 Giga o superior y un disco duro no menor a 80 Gigas</td>
<td>10%</td>
</tr>
<tr>
<td>Se requiere de un cable usb con entrada mini-usb</td>
<td>5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>
10.4. DISEÑO

Se inició el diseño del software donde se definieron de manera clara los requerimientos para determinar el alcance del proyecto; donde la base fueron diagramas de casos de uso que permitieron distinguir las relaciones que tiene el usuario con el software y la máquina de impresión 3D, consecutivamente se diseñó el diagrama de clase para definir los atributos y facilitar la codificación del software, luego se plantearon los diagramas secuenciales para determinar los tiempos de ejecución.

Se diseñó la interfaz gráfica para la máquina, la cual es agradable y cómoda para el usuario y para finalizar se implementó el software para el accionamiento de la prototipadora rápida experimental.

10.4.1. DIAGRAMAS DE CASOS DE USO.

![Diagrama de casos de uso](image)

Gráfico 4. Casos de uso. (Fuente: Autores)

Tabla 8. Carga de datos.

<table>
<thead>
<tr>
<th>CASO DE USO: CARGAR DATOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor: Usuario</td>
</tr>
<tr>
<td>Prerrequisitos: Ninguno</td>
</tr>
</tbody>
</table>
CASO DE USO: SELECCIONAR PUERTO

Actor: Usuario

Prerrequisitos: Ninguno

<table>
<thead>
<tr>
<th>Actores</th>
<th>Sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ingresar número de puerto.</td>
<td>3. Activar el puerto.</td>
</tr>
<tr>
<td>2. Presionar el botón iniciar</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores

Tabla 9. Selección de puerto

CASO DE USO: ENVIAR DATOS

Actor: Usuario, maquina

Prerrequisitos: Cargar datos, seleccionar puerto

<table>
<thead>
<tr>
<th>Actores</th>
<th>Sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Activar el puerto.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores
1. Usuario ejecuta la acción enviar datos
2. Lee la primera línea y envía al puerto seleccionado el comando.
3. Lee la siguiente línea y envía el comando.
4. Repite la acción 3 hasta llegar al final de los comandos.

Secuencia alterna

El usuario ejecuta el caso de uso detener

El usuario ejecuta el caso de uso continuar

Fuente: Autores

Tabla 11. Detener

CASO DE USO: DETENER

Actor: Usuario, maquina

Prerrequisitos: cargar datos, seleccionar puerto, enviar datos

Actores	Sistema
1. Presionar botón detener | 2. detiene la máquina en el comando que marche.

Fuente: Autores

Tabla 12. Continuar

CASO DE USO: CONTINUAR

Actor: Usuario, maquina
Prerrequisitos: cargar datos, seleccionar puerto, enviar datos, detener.

<table>
<thead>
<tr>
<th>Actores</th>
<th>Sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Presionar botón continuar</td>
<td>2. continúa con la lectura de los comandos en el cual se haya ejecutado el caso de uso detener.</td>
</tr>
</tbody>
</table>

Fuente: Autores.

10.4.2. DIAGRAMAS DE CLASES.

Gráfico 5. Diagrama de clases. (Fuente los autores)
10.4.3. DIAGRAMAS DE SECUENCIA.

Gráfico 6. Secuencia cargar datos. (fuente los autores)

Gráfico 7. Secuencial accionamiento motores. (Fuente: Autores)
Gráfico 8. Secuencial modelo pieza. (Fuente: Autores)

10.4.4. **INTERFAZ DE USUARIO.**

Gráfico 9. Interfaz Usuario. (Fuente: Autores)
10.5. PLANOS ELECTRÓNICOS.

Gráfico 10. Driver. (Fuente: Autores)

Gráfico 11. Tarjeta electrónica. (Fuente: Autores)
10.1. PLAN DE PRUEBAS.

El diseño de un producto software confiable y de calidad, necesita identificar los errores que han aparecido durante el ciclo de vida del proyecto. El plan de pruebas identifica tales errores que amenacen al objetivo del producto, por esta razón en esta parte se plantea un plan a seguir con el que se identificaran las falencias del aplicativo con la intención de entregar un software confiable y de calidad, no es viable garantizar que un software o sistema jamás falle, solo se pueden realizar pruebas que reduzcan este riesgo, las pruebas de caja negra se direccionan en las entradas y salidas del software estas buscan verificar que la relación entre las entradas y salidas sean correctas.

TIPO: PRUEBA DE MOTORES PASO A PASO Y EXTRUSOR
DIRECCIÓN: Las entradas y salidas que recibe el motor y el extrusor.
NIVELES: Desarrollo de la prueba se realizara en la etapa de construcción.
MÉTODO: Caja negra.

PRUEBAS DE INTEGRACIÓN
ENCARGADOS:
PRUEBAS:
Tabla 13. Prueba de motores pasó a paso y extrusor

<table>
<thead>
<tr>
<th>COMANDO CNC</th>
<th>R. ESPERADO</th>
<th>R. OBTENIDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>G91</td>
<td>ENCIENDE VENTILADOR Y RESISTENCIA</td>
<td>ENCIENDE</td>
</tr>
<tr>
<td>M3</td>
<td>ENCENDIDO DE MOTOR DE ARRASTRE DE MATERIAL</td>
<td>ENCIENDE</td>
</tr>
<tr>
<td>M5</td>
<td>APAGADO DE MOTOR DE ARRASTRE DE MATERIAL</td>
<td>APAGADO</td>
</tr>
<tr>
<td>G00</td>
<td>VELOCIDAD RAPIDA</td>
<td>VELOCIDAD RAPIDA</td>
</tr>
<tr>
<td>G01</td>
<td>VELOCIDAD LENTA</td>
<td>VELOCIDAD</td>
</tr>
</tbody>
</table>
TIPO: PRUEBA DE ENVIO DE DATOS

DIRECCIÓN: Las entradas y salidas que recibe la prototipadora.

NIVELES: Desarrollo de la prueba se realizara en la etapa de construcción.

MÉTODO: Caja negra.

PRUEBAS DE INTEGRACIÓN

ENCARGADOS:

PRUEBAS:

| Tabla 14. Prueba de envío de datos |
|-------------------------------|----------------|----------------|----------------|
| **DESCRIPCION** | **R ESPERADO** | **R OBTENIDO** | **OBSERVACION** |
| ENVIAR DATOS VALIDOS | ACCIONAMIENTO | ACCIONAMIENTO | NINGUNA |
| ENVIAR DATOS INVALIDOS | NO ACCIONAMIENTO| NO ACCIONAMIENTO| NO GENERA NINGUNA ACCION |

Fuente. Autores
10.2. TRABAJOS RELACIONADOS.

Nombre de la Tesis: Material articulado consolidado a través de un sistema de prototipado rápido experimental

Guillermo Jorge Zañartu Apara

Tesis para optar al grado de

Magíster en Ciencias de la Ingeniería

Profesor Supervisor:

JORGE RAMOS GREZ

Santiago de Chile, Marzo, 2009

© 2009, Guillermo Jorge Zañartu Apara.

URL:http://repositorio.uc.cl/xmlui/bitstream/handle/123456789/22966/zanartu_g.pdf?sequence=1
10. CONCLUSIONES.

- Se logró ejecutar un software el cual permite el accionamiento de los motores de la prototipadora rápida experimental.
- Se realizó una investigación y depuración sobre las herramientas que necesitaríamos para realizar el software.
- El software realizado comprobó que permite el accionamiento de los motores, extrusor.
- Este proyecto fue muy enriquecedor en cuanto a que adquirimos conocimientos en áreas como lenguajes de programación, en dispositivos electrónicos, prototipado rápido, conceptos de diseño industrial.
- Se cumplió el objetivo de que el usuario pudiera interactuar con la máquina mediante un software.
- Este proyecto servirá como base de investigación para el semillero de prototipaje rápido e investigaciones de automatización.
11. RECOMENDACIONES.

- Se recomienda generar un banco de proyectos el cual tenga una base de datos con el fin de observar qué proyectos hay en la universidad y en diferentes facultades.
- Se invita a cambiar totalmente las piezas de acrílico de la máquina por piezas de aluminio para poder permitir un ajuste toral de la máquina.
- Se recomienda cambiar las correas dentadas de la máquina.
- Generar un mantenimiento preventivo para los proyectos mecánicos de la universidad.
12. BIBLIOGRAFÍA

PALAZZESI, A. Motores Paso a Paso. En: NeoteoABC, P.1

http://axnm.galeon.com/

http://es.wikipedia.org/wiki/SolidWorks

http://www.sc.ehu.es/sbweb/webcentro/automatica/WebCQMH1/PAGINA%20PRINCIPAL/Automatizacion/Automatizacion.htm

http://testingbaires.com/automatizacion-de-pruebas-y-el-lenguaje-para-empezar/

biblioteca.ucp.edu.co/ojs/index.php/grafias/article/download/.../272

http://www.impresoras3d.com/abs-y-pla-diferencias-ventajas-y-desventajas
Pereira, 11 de octubre de 2013.

INFORME REVISIÓN DE LA PROTOTIPADORA RAPIDA EXPERIMENTAL

Luego de la revisión que realizamos el día de ayer hallamos lo siguiente:

Como la máquina lleva varios meses sin ser usada requiere mantenimiento y alineación debido a desajustes encontrados, este mantenimiento consta de dos etapas, una de ajuste mecánico donde se revisan todos los componentes, su integración y adaptación, y la otra es un mantenimiento electrónico, donde se deben revisar cada una de las piezas electrónicas, circuitos y conexiones.

En la revisión también se evidenció que faltan algunas piezas que son indispensables para su funcionamiento, como:

- Un motor “paso a paso” que activa el eje X.
- El control de mando
- Cables de potencia
- Conectores

Otras piezas que requieren intervención son:

- La polea de rodamiento se debe cambiar, debido a que tiene un empalme que chocaría con otras piezas.

ESTUDIANTES

Luis Miguel Osorio Castaño
José David Arbeláez Ramírez.

TUTOR

Andrés Vargas García.
En este manual de usuario se describen los pasos previos necesarios para poder permitir el accionamiento de los motores de la máquina prototipadora rápida experimental emitidas por los autores.

1. COMPONENTES NECESARIOS.

Los siguientes programas y componentes deben ser instalados y utilizados correctamente para su buen funcionamiento.

1.1 HERRAMIENTAS.

- Un pc con Windows Xp.
- Un cable, fuente de voltaje para encender la máquina.
- Un cable con entrada USB y mini USB.
- Tener el modelo en SolidWorks y los datos que arroja.

1.2 instalar Visual Basic 6.0 de 32 bits y X-CTU

Estos programas se pueden descargar desde la web.

Visual Basic 6.0 es un programa el cual permite a los desarrolladores poder programar de manera fácil ya que es muy gráfico para el desarrollador. Se recomienda instalarlo en un sistema operativo Windows XP preferiblemente para que no surjan problemas de compatibilidad este link:
X-CTU sirve para mirar la numeración o los puertos disponibles mediante USB instalarlo desde el ejecutable.

1.3 Comandos de ejecución el cual deben de ser comprendidos para entender el accionamiento de a la prototipadora.

G91 ---> MODO INCREMENTAL (ENCIENDE VENTILADOR Y RESISTENCIA)
M3 ---> ENCENDIDO DE MOTOR DE ARRASTRE DE MATERIAL
M5 ---> APAGADO DE MOTOR DE ARRASTRE DE MATERIAL
G00 ---> VELOCIDAD RAPIDA
G01 ---> VELOCIDAD LENTA
M1 ---> FIN DE PROGRAMA (APAGA VENTILADOR Y RESISTENCIA)
X50 ---> MOVIMIENTO DEL EJE X.
Y50 ---> MOVIMIENTO DEL EJE Y.
Z50 ---> MOVIMIENTO DEL EJE Z.

2.0 PASOS DE EJECUCIÓN.

Los siguientes pasos permiten el accionamiento de los motores de la maquina prototipadora rápida experimental.

2.1 Primero instalamos los programas requeridos en el paso anterior.

2.2 En este siguiente paso le damos el encendido manual a la máquina y conectamos el cable USB en el pc y la prototipadora.
2.3 Ejecutamos el software de accionamiento el cual se llama prototipo.exe el arroja una interfaz gráfica al usuario, luego ejecutamos X-CTU y observamos que puerto USB está disponible.

2.4 Luego de haber realizado los siguientes pasos y tener visualmente la interfaz gráfica, vamos al botón cargar datos buscamos el archivo de texto con los comandos CNC que son los datos arrojados por el programa de diseño 3D y le damos abrir para que carguen los datos en el software.
2.5 En el campo número de puerto digitamos 1 (uno) y presionamos el botón inicio ubicado a la derecha del campo número de puerto para abrir el puerto.

2.6 Por último vamos al botón donde se observa una figura de un microcontrolador para enviar los datos cargados, por el puerto que se indicó, y tener el accionamiento de los motores de la máquina prototipadora rápida experimental.

2.7 La interfaz del software tiene tres botones más. Los cuales son: detener, continuar y salir. Los dos primeros son para darle al usuario la posibilidad de detener y continuar la máquina en el momento que lo desee o halla un error de los componentes de dicha máquina y el último botón es salir; que cumple la función de darle fin a los pasos de ejecución.
3. RECOMENDACIÓN

Si después de haber realizado los pasos que se recomiendan en este manual para el accionamiento de los motores de la prototipadora se le sugiere que vuelva y realice los pasos desde el principio.